

INCLUDES Online Access to Full Text and Questions from the Book!

Embryology

Ronald W. Dudek

Outline format—highlights the most tested topics for Step 1

More than 250 board-style questions to help test your memorization and mastery

Online access—offers greater study flexibility

Lippincott Williams & Wilkins

Embryology

FIFTH EDITION

Ronald W. Dudek, PhD

Professor Department of Anatomy and Cell Biology Brody School of Medicine East Carolina University Greenville, North Carolina

Questions Contributor: H. Wayne Lambert, PhD

Acquisitions Editor: Crystal Taylor Product Manager: Sirkka E. Howes Marketing Manager: Brian Moody Manufacturing Manager: Margie Orzech Designer: Holly Reid McLaughlin Vendor Manager: Bridgett Dougherty Compositor: Aptara, Inc.

Fifth Edition

Copyright © 2011, 2008, 2005, 1998, 1994 Lippincott Williams & Wilkins, a Wolters Kluwer business.

Back cover images from Tasman W, Jaeger EA. *Wills Eye Hospital Atlas of Clinical Ophthalmology*. Philadelphia: Lippincott-Raven, 1996, and McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*. 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:2149, Fig. 433-8A.

351 West Camden Street Baltimore, MD 21201

530 Walnut Street Philadelphia, PA 19106

Printed in China

All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at permissions@lww.com, or via website at lww.com (products and services).

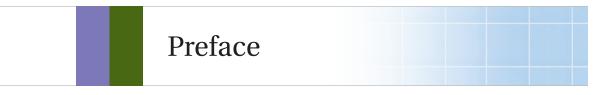
$9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1$

Library of Congress Cataloging-in-Publication Data

Dudek, Ronald W., 1950Embryology / Ronald W. Dudek ; questions contributor, H. Wayne Lambert. — 5th ed.
p. ; cm. — (Board review series)
Includes index.
ISBN 978-1-60547-901-9
1. Embryology, Human—Examinations, questions, etc. I. Title. II. Series: Board review series.
[DNLM: 1. Embryology—Examination Questions. 2. Embryology—Outlines. QS 618.2 D845b 2011]
QM601.F68 2011
612.6'4—dc22

2009048434

DISCLAIMER


Care has been taken to confirm the accuracy of the information present and to describe generally accepted practices. However, the authors, editors, and publisher are not responsible for errors or omissions or for any consequences from application of the information in this book and make no warranty, expressed or implied, with respect to the currency, completeness, or accuracy of the contents of the publication. Application of this information in a particular situation remains the professional responsibility of the practitioner; the clinical treatments described and recommended may not be considered absolute and universal recommendations.

The authors, editors, and publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accordance with the current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new or infrequently employed drug.

Some drugs and medical devices presented in this publication have Food and Drug Administration (FDA) clearance for limited use in restricted research settings. It is the responsibility of the health care provider to ascertain the FDA status of each drug or device planned for use in their clinical practice.

To purchase additional copies of this book, call our customer service department at (800) 638-3030 or fax orders to (301) 223-2320. International customers should call (301) 223-2300.

Visit Lippincott Williams & Wilkins on the Internet: http://www.lww.com. Lippincott Williams & Wilkins customer service representatives are available from 8:30 am to 6:00 pm, EST.

The fifth edition of *BRS Embryology* has afforded me the opportunity to further finetune a work that was already a highly rated course review book as well as an excellent review for the USMLE Step 1. This fine-tuning is a result of the many students who have contacted me by e-mail to point out errors and give suggestions for improvement. I appreciate this student feedback very much.

In the fifth edition, I have placed clinical images closer to the corresponding text to make reviewing more efficient. As in the previous edition, the Comprehensive Examination at the end of the book reflects the USMLE Step 1 format.

I hope that students will continue to find *BRS Embryology* a clear and thorough review of embryology. After taking the USMLE Step 1, I invite you to e-mail me at dudekr@ecu.edu to convey any comments or to indicate any area that was particularly represented on the USMLE Step 1, so that future editions of this book may improve.

Ronald W. Dudek, PhD

Contents

Preface iii

1. PREFERTILIZATION EVENTS

- I. Sexual Reproduction 1
- II. Chromosomes 1
- III. Meiosis 2
- **IV.** Oogenesis: Female Gametogenesis 2
- V. Spermatogenesis: Male Gametogenesis 4
- **VI.** Clinical Considerations 4

Study Questions for Chapter 1 8 Answers and Explanations 10

2. WEEK 1 OF HUMAN DEVELOPMENT (DAYS 1–7)

1

12

18

26

I. Fertilization 12

- **II.** Cleavage and Blastocyst Formation 12
- III. Implantation 13
- **IV.** Clinical Considerations 14
- Study Questions for Chapter 2 15 Answers and Explanations 17

3. WEEK 2 OF HUMAN DEVELOPMENT (DAYS 8–14)

- I. Further Development of the Embryoblast 18
- **II.** Further Development of the Trophoblast 18
- III. Development of Extraembryonic Mesoderm 18
- **IV**. Clinical Considerations 20

Study Questions for Chapter 322Answers and Explanations24

4. EMBRYONIC PERIOD (WEEKS 3–8)

- I. General Considerations 26
- II. Further Development of the Embryoblast 26
- III. Vasculogenesis (De Novo Blood Vessel Formation) 29

IV. Hematopoiesis (Blood Cell Formation) 31

V. Clinical Considerations 31

Study Questions for Chapter 4 33 Answers and Explanations 35

5. CARDIOVASCULAR SYSTEM

- I. Formation of Heart Tube 37
- II. Primitive Heart Tube Dilations 37
- III. The Aorticopulmonary (AP) Septum 39
- **IV**. The Atrial Septum 41
- **V**. The Atrioventricular (AV) Septum 43
- VI. The Interventricular (IV) Septum 45
- **VII.** The Conduction System of the Heart 46
- VIII. Coronary Arteries 47
 - **IX**. Development of the Arterial System 47
 - **X**. Development of the Venous System 49

Study Questions for Chapter 5 50 Answers and Explanations 53

6. PLACENTA AND AMNIOTIC FLUID

- I. Formation of the Placenta 55
- II. Placental Components: Decidua Basalis and Villous Chorion 55
- III. Placental Membrane 58
- IV. The Placenta as an Endocrine Organ 59
- **V**. The Umbilical Cord 60
- **VI.** Circulatory System of the Fetus 60
- **VII**. Amniotic Fluid 62
- VIII. Twinning 62
- **IX**. Clinical Considerations 64

Study Questions for Chapter 6 67 Answers and Explanations 69

7. NERVOUS SYSTEM

- I. Overview 70
- **II.** Development of the Neural Tube 70
- III. Neural Crest Cells 72
- IV. Placodes 74
- **V**. Vesicle Development of the Neural Tube 74
- **VI.** Histogenesis of the Neural Tube 75
- **VII.** Layers of the Early Neural Tube 77
- VIII. Development of the Spinal Cord 77
- IX. Development of the Myelencephalon 78
- **X**. Development of the Metencephalon 79
- **XI**. Development of the Mesencephalon 80

v

55

- XII. Development of the Diencephalon, Optic Structures, and Hypophysis 81
- XIII. Development of the Telencephalon 82
- **XIV.** Development of the Sympathetic Nervous System 84
- **XV**. Development of the Parasympathetic Nervous System 84
- **XVI**. Development of the Cranial Nerves 84
- XVII. Development of the Choroid Plexus 85
- XVIII. Congenital Malformations of the Central Nervous System 86

Study Questions for Chapter 7 93 Answers and Explanations 96

FAR 8.

98

- I. Overview 98 **II.** The Internal Ear 98
- **III.** The Membranous and Bony Labyrinths 98
- **IV.** Middle Ear 100
- V. External Ear 100
- **VI.** Congenital Malformations of the Ear 101

Study Questions for Chapter 8 104 Answers and Explanations 105

9. EYE

- I. Development of the Optic Vesicle 106
- **II.** Development of Other Eye Structures 109
- **III.** Congenital Malformations of the Eye 110

Study Questions for Chapter 9 113 Answers and Explanations 114

10. DIGESTIVE SYSTEM

- I. Overview 115
- **II.** Derivatives of the Foregut 115
- III. Derivatives of the Midgut 123
- **IV**. Derivatives of the Hindgut 127
- V. Anal Canal 130
- VI. Mesenteries 130

Study Questions for Chapter 10 131 Answers and Explanations 133

11. RESPIRATORY SYSTEM

I. Upper Respiratory System 134 II. Lower Respiratory System 134 Study Questions for Chapter 11 142 Answers and Explanations 144

106

115

12. HEAD AND NECK

- I. Pharyngeal Apparatus 145
- II. Development of the Thyroid Gland 145
- III. Development of the Tongue 147
- **IV**. Development of the Face 148
- **V**. Development of the Palate 149
- **VI.** Development of the Mouth 150
- VII. Development of the Nasal Cavities 150
- VIII. Clinical Considerations 151

Study Questions for Chapter 12 154 Answers and Explanations 155

13. URINARY SYSTEM

I. Overview 156

- II. Development of the Metanephros 156
- III. Relative Ascent of the Kidneys 157
- IV. Blood Supply of the Kidneys 158
- V. Development of the Urinary Bladder 159
- **VI.** Development of the Female Urethra 159
- **VII.** Development of the Male Urethra 160
- VIII. Clinical Considerations 161
- **IX**. Development of the Suprarenal Gland 165

Study Questions for Chapter 13 169 Answers and Explanations 170

14. FEMALE REPRODUCTIVE SYSTEM

- I. The Indifferent Embryo 171
- **II**. Development of the Gonads 171
- III. Development of the Genital Ducts 173
- IV. Development of the Primordia of External Genitalia 175
- V. Tanner Stages of Female Sexual Development 176
- **VI.** Clinical Considerations 176

Study Questions for Chapter 14 180 Answers and Explanations 181

15. MALE REPRODUCTIVE SYSTEM

- I. The Indifferent Embryo 182
- II. Development of the Gonads 182
- III. Development of the Genital Ducts 184
- IV. Development of the Primordia of External Genitalia 186
- V. Tanner Stages of Male Sexual Development 186
- **VI.** Clinical Considerations 186
- VII. Summary 191

Study Questions for Chapter 15 192 Answers and Explanations 193 vii

182

171

16. INTEGUMENTARY SYSTEM

- I. Skin 194
- II. Hair and Nails 198
- III. Mammary, Sweat, and Sebaceous Glands 201
- **IV.** Teeth 203

Study Questions for Chapter 16 205 Answers and Explanations 206

17. SKELETAL SYSTEM

- I. Skull 207
- II. Vertebral Column 211
- III. Ribs 216
- IV. Sternum 216
- V. Bones of the Limbs and Limb Girdles 216
- **VI**. Osteogenesis 217
- VII. General Skeletal Abnormalities 217

Study Questions for Chapter 17 220

Answers and Explanations 221

18. MUSCULAR SYSTEM

- I. Skeletal Muscle 222
- II. Smooth Muscle 223
- III. Cardiac Muscle 224
- IV. Clinical Considerations 224

Study Questions for Chapter 18226Answers and Explanations227

19. UPPER LIMB

- I. Overview of Development 228
- II. Vasculature 228
- III. Musculature 230
- **IV.** Nerves: The Brachial Plexus 230
- **V**. Rotation of the Upper Limb 231
- VI. Skeletal 232

Study Questions for Chapter 19234Answers and Explanations235

20. LOWER LIMB

- I. Overview of Development 236
- II. Vasculature 236
- III. Musculature 238
- **IV**. Nerves: The Lumbosacral Plexus 238

228

236

207

V. Rotation of the Lower Limb 239

VI. Skeletal 240

Study Questions for Chapter 20 242 Answers and Explanations 243

21. BODY CAVITIES

- I. Formation of the Intraembryonic Coelom 244
- II. Partitioning of the Intraembryonic Coelom 244
- **III.** Positional Changes of the Diaphragm 245
- **IV**. Clinical Considerations 245

Study Questions for Chapter 21 247 Answers and Explanations 248

22. PREGNANCY

- I. Endocrinology of Pregnancy 249
- II. Pregnancy Dating 250
- III. Pregnancy Milestones 250
- IV. Prenatal Diagnostic Procedures 251
- V. Fetal Distress During Labor (Intrapartum) 252
- VI. The APGAR Score 252
- VII. Puerperium 253
- VIII. Lactation 253
 - IX. Small-for-Gestational Age (SGA) Infant 253
 - X. Collection and Storage of Umbilical Cord Blood (UCB) 254

Study Questions for Chapter 22 255 Answers and Explanations 256

23. TERATOLOGY

- I. Introduction 257
- II. Infectious Agents 257
- III. TORCH Infections 259
- IV. Childhood Vaccinations 261
- V. Category X Drugs (Absolute Contraindication in Pregnancy) 261
- VI. Category D Drugs (Definite Evidence of Risk to Fetus) 262
- VII. Chemical Agents 263
- VIII. Recreational Drugs 263
- IX. Ionizing Radiation 264

Study Questions for Chapter 23 265 Answers and Explanations 266

Comprehensive Examination 267 Credits 284 Index 293

244

249

iх

chapter

Prefertilization Events

I. SEXUAL REPRODUCTION

Sexual reproduction occurs when female and male gametes (oocyte and spermatozoon, respectively) unite at fertilization. Gametes are direct descendants of **primordial germ cells**, which are first observed in **the wall of the yolk sac** at week 4 of embryonic development and subsequently migrate into the future gonad region. Gametes are produced by **gametogenesis** (called **oogenesis** in the female and **spermatogenesis** in the male). Gametogenesis employs a specialized process of cell division, **meiosis**, which uniquely distributes chromosomes among gametes.

II. CHROMOSOMES (FIGURE 1.1)

A single chromosome consists of two characteristic regions called **arms (p arm = short arm; q arm = long arm)**, which are separated by a **centromere**. During meiosis I, **single chromosomes** undergo DNA replication, which essentially duplicates the arms. This forms **duplicated chromosomes**, which consist of two sister **chromatids** attached at the centromere.

- **A. Ploidy and N number.** Ploidy refers to **the number of chromosomes** in a cell. The N number refers to the **amount of DNA** in a cell.
 - Normal somatic cells and primordial germ cells contain 46 single chromosomes and 2N amount of DNA. The chromosomes occur in 23 homologous pairs; one member (homologue) of each pair is of maternal origin, and the other is of paternal origin. The term "diploid" is classically used to refer to a cell containing 46 single chromosomes. Chromosome pairs 1–22 are autosomal (nonsex) pairs. Chromosome pair 23 consists of the sex chromosomes (XX for a female and XY for a male).
 - **2.** Gametes contain 23 single chromosomes (22 autosomes and 1 sex chromosome) and 1N amount of DNA. The term "haploid" is classically used to refer to a cell containing 23 single chromosomes. Female gametes contain only the X sex chromosome. Male gametes contain either the X or Y sex chromosome; therefore, the male gamete determines the genetic sex of the individual.
- **B.** The X chromosome. A normal female somatic cell contains two X chromosomes (XX). The female cell has evolved a mechanism for permanent **inactivation** of one of the X chromosomes, which occurs during week 1 of embryonic development. The choice of which X chromosome (maternal or paternal) is inactivated seems to be random. The inactivated X chromosome, which can be seen by light microscopy near the nuclear membrane, is called the **Barr body**.
- C. The Y chromosome. A normal male somatic cell contains one X chromosome and one Y chromosome (XY).

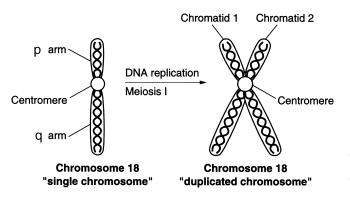


FIGURE 1.1. A schematic diagram of chromosome 18 showing it in its "singlechromosome" state and in the "duplicated-chromosome" state that is formed by DNA replication during meiosis I. It is important to understand that both the "single-chromosome" state and the "duplicated-chromosome" state will be counted as one chromosome 18. As long as the additional DNA in the "duplicated chromosome" is bound at the centromere, the structure will be counted as one chromosome 18 even though it has twice the amount of DNA.

III. MEIOSIS

Meiosis is a specialized process of cell division that occurs only in the production of gametes within the female ovary or male testes. It consists of two divisions (meiosis I and meiosis II), which result in the formation of four gametes, each containing half the number of chromosomes (23 single chromosomes) and half the amount of DNA (1N) found in normal somatic cells (46 single chromosomes, 2N).

A. Meiosis I. Events that occur during meiosis I include the following:

- 1. Synapsis: pairing of 46 homologous duplicated chromosomes.
- 2. Crossing over: exchange of large segments of DNA.
- **3. Alignment:** alignment of 46 homologous duplicated chromosomes at the metaphase plate.
- 4. Disjunction: separation of 46 homologous duplicated chromosomes from each other; centromeres do not split.
- **5. Cell division:** formation of two secondary gametocytes (23 duplicated chromosomes, 2N).

B. Meiosis II. Events that occur during meiosis II include the following:

- 1. Synapsis: absent.
- 2. Crossing over: absent.
- 3. Alignment: alignment of 23 duplicated chromosomes at the metaphase plate.
- 4. Disjunction: separation of 23 duplicated chromosomes to form 23 single chromosomes; centromeres split.
- 5. Cell division: formation of four gametes (23 single chromosomes, 1N).

IV. OOGENESIS: FEMALE GAMETOGENESIS (FIGURE 1.2)

- A. Primordial germ cells (46, 2N) from the wall of the yolk sac arrive in the ovary at week 4 and differentiate into oogonia (46, 2N), which populate the ovary through *mitotic* division.
- **B.** Oogonia enter meiosis I and undergo DNA replication to form **primary oocytes (46, 4N)**. All primary oocytes are formed by the **month 5 of fetal life**. No oogonia are present at birth.
- **C.** Primary oocytes remain **dormant in prophase (diplotene) of meiosis l** from month 5 of fetal life until puberty. After puberty, 5 to 15 primary oocytes begin maturation with each ovarian cycle, with usually only 1 reaching full maturity in each cycle.

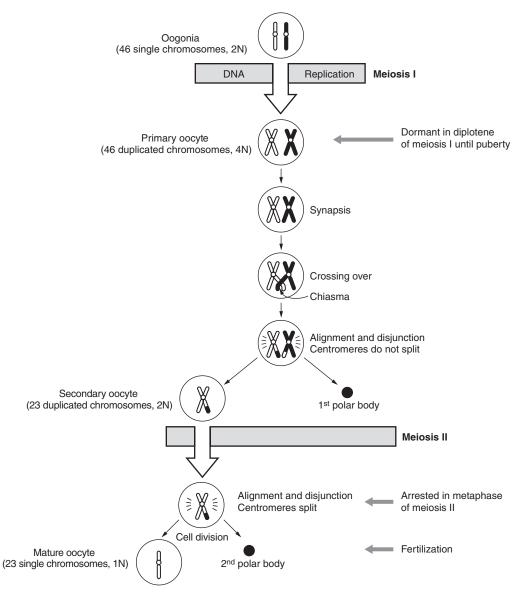


FIGURE 1.2. Oogenesis: female gametogenesis. Note that only one pair of homologous chromosomes is shown (*white*, maternal origin; *black*, paternal origin). Synapsis is the process of pairing of homologous chromosomes. The point at which the DNA molecule crosses over is called the chiasma and is where exchange of small segments of maternal and paternal DNA occurs. Note that synapsis and crossing over occur only during meiosis I.

- **D**. During the ovarian cycle, a primary oocyte completes meiosis I to form two daughter cells: the **secondary oocyte (23, 2N)** and the **first polar body**, which degenerates.
- **E.** The secondary oocyte promptly begins meiosis II but is **arrested in metaphase of meiosis II** about 3 hours before ovulation. The secondary oocyte remains arrested in metaphase of meiosis II until fertilization occurs.
- F. At fertilization, the secondary oocyte completes meiosis II to form a **mature oocyte (23, 1N)** and a **second polar body**.

4 BRS Embryology

G. Approximate number of oocytes

- **1. Primary oocytes:** At month 5 of fetal life, 7 million primary oocytes are present. At birth, 2 million are present (5 million have degenerated). At puberty, 40,000 are present (1.96 million more have degenerated).
- **2.** Secondary oocytes: Twelve secondary oocytes are ovulated per year, up to 480 over the entire reproductive life of the woman (40 years \times 12 secondary oocytes per year = 480). This number (480) is obviously overly simplified since it is **reduced** in women who take birth control pills (which prevent ovulation), in women who become pregnant (ovulation stops during pregnancy), and in women who may have anovulatory cycles.

V. SPERMATOGENESIS: MALE GAMETOGENESIS (FIGURE 1.3)

Spermatogenesis is classically divided into three phases:

A. Spermatocytogenesis

- 1. Primordial germ cells (46, 2N) from the wall of the yolk sac arrive in the testes at week 4 and remain dormant until puberty. At puberty, primordial germ cells differentiate into type A spermatogonia (46, 2N).
- **2.** Type A spermatogonia undergo mitosis to provide a continuous supply of stem cells throughout the reproductive life of the male. Some type A spermatogonia differentiate into **type B spermatogonia (46, 2N)**.

B. Meiosis

- **1.** Type B spermatogonia enter meiosis I and undergo DNA replication to form **primary spermatocytes** (46, 4N).
- 2. Primary spermatocytes complete meiosis I to form secondary spermatocytes (23, 2N).
- 3. Secondary spermatocytes complete meiosis II to form four spermatids (23, 1N).

C. Spermiogenesis

- 1. Spermatids undergo a **postmeiotic series of morphological changes** to form **sperm (23, 1N)**. These changes include formation of the acrosome; condensation of the nucleus; and formation of head, neck, and tail. The total time of sperm formation (from spermatogonia to spermatozoa) is about 64 days.
- **2.** Newly ejaculated sperm are incapable of fertilization until they undergo **capacita-tion**, which occurs in the female reproductive tract and involves the unmasking of sperm glycosyltransferases and removal of proteins coating the surface of the sperm.

VI. CLINICAL CONSIDERATIONS

A. Offspring of older women. Prolonged dormancy of primary oocytes may be the reason for the high incidence of chromosomal abnormalities in offspring of older women. Since all primary oocytes are formed by month 5 of fetal life, a female infant is born with her entire supply of gametes. Primary oocytes remain dormant until ovulation; those ovulated late in the woman's reproductive life may have been dormant for as long as 40 years. The incidence of trisomy 21 (Down syndrome) increases with advanced age of the mother. The primary cause of Down syndrome is maternal meiotic nondisjunction. Clinical findings include moderate mental retardation, microcephaly, microphthalmia, colobomata, cataracts and glaucoma, flat nasal bridge, epicanthal folds, protruding tongue, Brushfield spots, simian crease in the hand, increased nuchal skin folds, congenital heart defects, and an association with a decrease in α -fetoprotein.

Chapter 1 Prefertilization Events

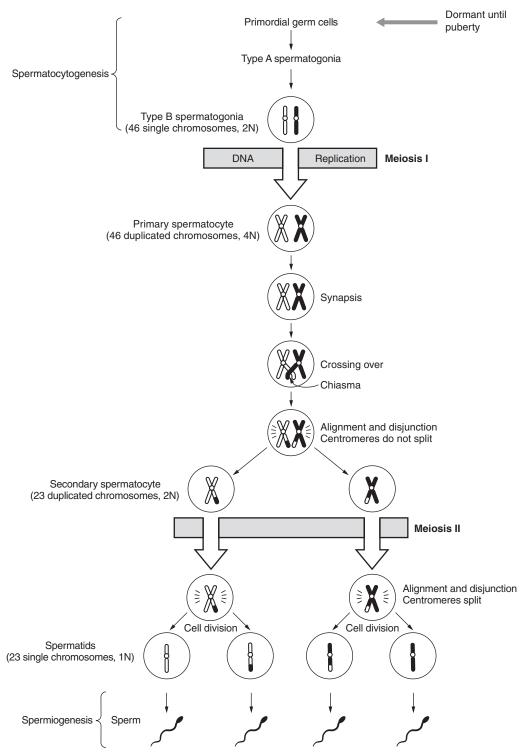


FIGURE 1.3. Spermatogenesis: male gametogenesis. Note that only one pair of homologous chromosomes is shown (*white*, maternal origin; *black*, paternal origin). Synapsis is the process of pairing of homologous chromosomes. The point at which the DNA molecule crosses over is called the chiasma and is where exchange of small segments of maternal and paternal DNA occurs. Note that synapsis and crossing over occur only during meiosis I.

6 BRS Embryology

- **B.** Offspring of older men. An increased incidence of **achondroplasia** (a congenital skeletal anomaly characterized by retarded bone growth) and **Marfan syndrome** are associated with advanced paternal age.
- **C.** Male fertility depends on the number and motility of sperm. Fertile males produce from 20 to more than 100 million sperm/mL of semen. Sterile males produce less than 10 million sperm/mL of semen. Normally up to 10% of sperm in an ejaculate may be grossly deformed (two heads or two tails), but these sperm probably do not fertilize an oocyte owing to their lack of motility. There are a number of causes of male infertility, including the following:
 - 1. Unexplained infertility (40%–50% of cases).
 - **2. Primary hypogonadism** (30%–40% of cases). This includes Klinefelter syndrome (XXY), cryptorchidism, congenital androgen insensitivity due to androgen-receptor abnormalities, 5α -reductase deficiency, Reifenstein syndrome, Y chromosome deletions or substitutions, and mumps virus infection (viral orchitis).
 - **3. Disorders of sperm transport** (10%–20% of cases). These include abnormalities of the epididymis, abnormalities of the vas deferens, and defective ejaculation.
 - **4. Hypothalamic-pituitary disease** (1%–2% of cases). This includes congenital idiopathic hypogonadotropic hypogonadism caused by a defect in gonadotropin-releasing factor (GRF) secretion from the hypothalamus, acquired hypogonadotropic hypogonadism caused by a pituitary macroadenoma, surgical therapy for a pituitary macroadenoma, craniopharyngioma, and pituitary vascular lesions.

D. Hormonal contraception

- 1. Oral contraceptives
 - **a. Combination pills** contain a combination of estrogen and progesterone. They are taken for 21 days and then discontinued for 7 days. The primary mechanism of action is the inhibition of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) secretion, which prevents ovulation.
 - **b. Progesterone-only pills** contain only progesterone. They are taken continuously without a break. The primary mechanism of action is not known, but thickening of cervical mucus (hostile to sperm migration) and thinning of the endometrium (unprepared for conceptus implantation) are known to occur.
- 2. Medroxyprogesterone acetate (Depo-Provera) is a progesterone-only product that offers a long-acting alternative to oral contraceptives. It can be injected **intramuscularly** and will prevent ovulation for 2–3 months.
- **3. Levonorgestrel (Norplant)** is a progesterone-only product that offers an even longeracting alternative to Depo-Provera. The capsules containing levonorgestrel can be implanted **subdermally** and will prevent ovulation for **1–5 years**.
- **4. Seasonale** is a combined ethinyl estradiol (0.03 mg) and levonorgestrel (0.15 mg) product that is an **extended-cycle** oral contraceptive. Seasonale is a 91-day treatment cycle whereby the woman should expect to have four menstrual periods per year.
- **5. Ortho Evra** is a combined ethinyl estradiol (0.75 mg) and norelgestromin (6.0 mg) product that is a transdermal contraceptive patch.
- 6. Emergency contraceptive pills (ECPs), or postcoital contraception, are sometimes called "morning-after pills," but the pills can be started right away or up to 5 days after the woman has had unprotected sex. The therapy is more effective the earlier it is initiated within a 120-hour window. There are two types of ECPs:
 - **a. Combined ECPs** contain both estrogen and progesterone in the same dose as ordinary birth control pills. In many countries (but not the United States), combined ECPs are specially packaged and labeled for emergency use. However, not all brands of birth control pills can be used for emergency contraception (for more information, see the Emergency Contraception Web site http://ec.princeton.edu/). The dosage of **Ogestrel** and **Ovral** is two pills within 120 hours after unprotected sex, followed by two more

Time	Chance of Pregnancy (%)
5 days before ovulation	10
4 days before ovulation	16
3 days before ovulation	14
2 days before ovulation	27
1 day before ovulation	31
Day of ovulation	33
Day after ovulation	0

t a b l e **1.1** Chance of Pregnancy in Days Near Ovulation

pills 12 hours later. Combined ECPs are associated with a high incidence of nausea and vomiting.

- **b. Progesterone-only ECPs** contain only **progesterone**. The brand name in the United States is **Plan B** (0.75 mg of levonorgestrel). The dosage of Plan B is one pill within 72 hours of unprotected sex; the second pill should be taken 12 hours after the first pill. Plan B shows a reduced incidence of nausea and vomiting.
- **c. Diethylstilbestrol (DES)** was used as an ECP in the past but has been discontinued because it is associated with reproductive tract anomalies and vaginal cancers in exposed offspring. **Clear-cell adenocarcinoma of the vagina** occurs in daughters of women who were exposed to DES therapy during pregnancy. A precursor to clear-cell adenocarcinoma is vaginal **adenosis** (a benign condition), in which stratified squamous epithelium is replaced by mucosal columnar epithelial-lined crypts.
- **7.** Luteinizing hormone–releasing hormone (LH-RH) analogues. Chronic treatment with a LH-RH analogue (e.g., **buserelin**) paradoxically results in a downregulation of FSH and LH secretion, thereby preventing ovulation.
- **E. Anovulation** is the absence of ovulation in some women due to inadequate secretion of FSH and LH. **Clomiphene citrate** is a drug that competes with estrogen for binding sites in the adenohypophysis, thereby suppressing the normal negative feedback loop of estrogen on the adenohypophysis. This stimulates FSH and LH secretion and induces ovulation.
- **F.** The estimated chance of pregnancy (fertility) in the days surrounding ovulation is shown in Table 1.1.

Study Questions for Chapter 1

1. Which of the following is a major characteristic of meiosis I?

- (A) Splitting of the centromere
- (B) Pairing of homologous chromosomes
- (C) Reducing the amount of DNA to 1N
- **(D)** Achieving the diploid number of chromosomes
- (E) Producing primordial germ cells

2. A normal somatic cell contains a total of 46 chromosomes. What is the normal complement of chromosomes found in a sperm?

- (A) 22 autosomes plus a sex chromosome
- (B) 23 autosomes plus a sex chromosome
- (C) 22 autosomes
- (D) 23 autosomes
- (E) 23 paired autosomes

3. Which of the following describes the number of chromosomes and amount of DNA in a gamete?

- (A) 46 chromosomes, 1N
- (B) 46 chromosomes, 2N
- (C) 23 chromosomes, 1N
- (D) 23 chromosomes, 2N
- (E) 23 chromosomes, 4N

4. Which of the following chromosome compositions in a sperm normally results in the production of a genetic female if fertilization occurs?

- (A) 23 homologous pairs of chromosomes
- (B) 22 homologous pairs of chromosomes
- (C) 23 autosomes plus an X chromosome
- (D) 22 autosomes plus a Y chromosome
- (E) 22 autosomes plus an X chromosome

5. In the process of meiosis, DNA replication of each chromosome occurs, forming a structure consisting of two sister chromatids attached to a single centromere. What is this structure?

- (A) A duplicated chromosome
- **(B)** Two chromosomes
- (C) A synapsed chromosome
- **(D)** A crossover chromosome
- (E) A homologous pair

- 6. All primary oocytes are formed by
- (A) week 4 of embryonic life
- (B) month 5 of fetal life
- (C) birth
- (D) month 5 of infancy
- (E) puberty

7. When does formation of primary spermatocytes begin?

- (A) During week 4 of embryonic life
- (**B**) During month 5 of fetal life
- (C) At birth
- (D) During month 5 of infancy
- (E) At puberty

8. In the production of female gametes, which of the following cells can remain dormant for 12–40 years?

- (A) Primordial germ cell
- (B) Primary oocyte
- (C) Secondary oocyte
- **(D)** First polar body
- (E) Second polar body

9. In the production of male gametes, which of the following cells remains dormant for 12 years?

- (A) Primordial germ cell
- (B) Primary spermatocyte
- (C) Secondary spermatocyte
- (D) Spermatid
- (E) Sperm

10. Approximately how many sperm will be ejaculated by a normal fertile male during sexual intercourse?

- (A) 10 million
- (B) 20 million
- (C) 35 million
- (D) 100 million
- (E) 350 million

11. A young woman enters puberty with approximately 40,000 primary oocytes in her ovary. About how many of these primary oocytes will be ovulated over the entire reproductive life of the woman?

- **(A)** 40,000
- **(B)** 35,000
- **(C)** 480
- **(D)** 48
- **(E)** 12

12. Fetal sex can be diagnosed by noting the presence or absence of the Barr body in cells obtained from the amniotic fluid. What is the etiology of the Barr body?

- (A) Inactivation of both X chromosomes
- (B) Inactivation of homologous chromosomes
- (C) Inactivation of one Y chromosome
- (D) Inactivation of one X chromosome
- (E) Inactivation of one chromatid

13. How much DNA does a primary spermatocyte contain?

- (A) 1N
- **(B)** 2N
- **(C)** 4N
- **(D)** 6N
- (E) 8N

14. During meiosis, pairing of homologous chromosomes occurs, which permits large segments of DNA to be exchanged. What is this process called?

- (A) Synapsis
- (B) Nondisjunction
- (C) Alignment
- (D) Crossing over
- (E) Disjunction

Chapter 1 Prefertilization Events

- **15.** During ovulation, the secondary oocyte resides at what specific stage of meiosis?
- (A) Prophase of meiosis I
- (B) Prophase of meiosis II
- (C) Metaphase of meiosis I
- (D) Metaphase of meiosis II
- (E) Meiosis is completed at the time of ovulation

16. Concerning maturation of the female gamete (oogenesis), when do the oogonia enter meiosis I and undergo DNA replication to form primary oocytes?

- (A) During fetal life
- (B) At birth
- (C) At puberty
- (D) With each ovarian cycle
- (E) Following fertilization

17. Where do primordial germ cells initially develop?

- (A) In the gonads at week 4 of embryonic development
- (B) In the yolk sac at week 4 of embryonic development
- (C) In the gonads at month 5 of embryonic development
- **(D)** In the yolk sac at month 5 of embryonic development
- (E) In the gonads at puberty

Answers and Explanations

- **1. B.** Pairing of homologous chromosomes (synapsis) is a unique event that occurs only during meiosis I in the production of gametes. Synapsis is necessary so that crossing over can occur.
- **2. A.** A normal gamete (sperm in this case) contains 23 single chromosomes. These 23 chromosomes consist of 22 autosomes plus 1 sex chromosome.
- **3. C.** Gametes contain 23 chromosomes and 1N amount of DNA, so that when two gametes fuse at fertilization, a zygote containing 46 chromosomes and 2N amount of DNA is formed.
- **4. E.** A sperm contains 22 autosomes and 1 sex chromosome. The sex chromosome in sperm may be either the X or the Y chromosome. The sex chromosome in a secondary oocyte is only the X chromosome. If an X-bearing sperm fertilizes a secondary oocyte, a genetic female (XX) is produced. Therefore, sperm is the arbiter of sex determination.
- **5. A.** The structure formed is a duplicated chromosome. DNA replication occurs, so that the amount of DNA is doubled $(2 \times 2N = 4N)$. However, the chromatids remain attached to the centromere, forming a duplicated chromosome.
- **6. B.** During early fetal life, oogonia undergo mitotic divisions to populate the developing ovary. All the oogonia subsequently give rise to primary oocytes by month 5 of fetal life; at birth, no oogonia are present in the ovary. At birth, a female has her entire supply of primary oocytes to carry her through reproductive life.
- **7. E.** At birth, a male has primordial germ cells in the testes that remain dormant until puberty, at which time they differentiate into type A spermatogonia. At puberty, some type A spermatogonia differentiate into type B spermatogonia and give rise to primary spermatocytes by undergoing DNA replication.
- **8. B.** Primary oocytes are formed by month 5 of fetal life and remain dormant until puberty, when hormonal changes in the young woman stimulate the ovarian and menstrual cycles. From 5 to 15 oocytes will then begin maturation with each ovarian cycle throughout the woman's reproductive life.
- **9. A.** Primordial germ cells migrate from the wall of the yolk sac during the week 4 of embryonic life and enter the gonad of a genetic male, where they remain dormant until puberty (about age 12 years), when hormonal changes in the young man stimulate the production of sperm.
- **10. E.** A normal fertile male will ejaculate about 3.5 mL of semen containing about 100 million sperm/mL ($3.5 \text{ mL} \times 100 \text{ million} = 350 \text{ million}$).
- **11. C.** Over her reproductive life, a woman will ovulate approximately 480 oocytes. A woman will ovulate 12 primary oocytes per year, provided that she is not using oral contraceptives, does not become pregnant, or does not have any anovulatory cycles. Assuming a 40-year reproductive period gives $40 \times 12 = 480$.
- **12. D.** The Barr body is formed from inactivation of one X chromosome in a female. All somatic cells of a normal female will contain two X chromosomes. The female has evolved a mechanism for permanent inactivation of one of the X chromosomes presumably because a double dose of X chromosome products would be lethal.

- **13. C.** Type B spermatogonia give rise to primary spermatocytes by undergoing DNA replication, thereby doubling the amount of DNA ($2 \times 2N = 4N$) within the cell.
- **14. D.** Synapsis (pairing of homologous chromosomes) is a unique event that occurs only during meiosis I in the production of gametes. Synapsis is necessary so that crossing over, whereby large segments of DNA are exchanged, can occur.
- **15. D**. The secondary oocyte is arrested in metaphase of meiosis II about 3 hours before ovulation, and it remains in this meiotic stage until fertilization.
- **16. A.** All primary oocytes are formed by month 5 of fetal life, so no oogonia are present at birth.
- **17. B.** Primordial germ cells, the predecessors to gametes, are first seen in the wall of the yolk sac at week 4 of embryonic development, and they migrate into the gonads at week 6.

chapter 2 Week 1 Of Figure 2 Development (Days 1–7)*

I. FERTILIZATION

Fertilization occurs in the ampulla of the uterine tube and includes three phases.

A. Phase 1: Sperm penetration of corona radiata is aided by the action of sperm and uterine tube mucosal enzymes.

B. Phase 2: Sperm binding and penetration of the zona pellucida

- **1.** Sperm binding occurs through interaction of sperm glycosyltransferases and ZP3 receptors located on the zona pellucida. Sperm binding triggers the **acrosome reaction**, which entails the fusion of the outer acrosomal membrane and sperm cell membrane, resulting in the release of acrosomal enzymes.
- 2. Penetration of the zona pellucida is aided by acrosomal enzymes, specifically acrosin. Sperm contact with the cell membrane of a secondary oocyte triggers the **cortical reac**tion, which entails the release of cortical granules (lysosomes) from the oocyte cytoplasm. This reaction renders both the zona pellucida and oocyte membrane impermeable to other sperm.
- C. Phase 3: Fusion of sperm and oocyte cell membranes occurs with subsequent breakdown of both membranes at the fusion area.
 - **1.** The entire sperm (except the cell membrane) enters the cytoplasm of the secondary oocyte arrested in metaphase of meiosis II. The sperm mitochondria and tail degenerate. The sperm nucleus is now called the **male pronucleus**. Since all sperm mitochondria degenerate, all mitochondria within the zygote are of maternal origin (i.e., all mitochondrial DNA is of maternal origin).
 - 2. The secondary oocyte completes meiosis II, forming a mature ovum and second polar body. The nucleus of the mature ovum is now called the **female pronucleus**.
 - **3.** Male and female pronuclei fuse, forming a **zygote** (a new cell whose genotype is an intermingling of maternal and paternal chromosomes).

II. CLEAVAGE AND BLASTOCYST FORMATION (FIGURE 2.1)

- A. Cleavage is a series of **mitotic** divisions of the zygote.
 - 1. Zygote cytoplasm is successively partitioned (cleaved) to form a blastula consisting of increasingly smaller blastomeres (2-cell, 4-cell, 8-cell, and so on). Blastomeres are

^{*}The age of a developing conceptus can be measured either from the estimated day of fertilization (fertilization age) or from the day of the last normal menstrual period (LNMP age). In this book, age is presented as the fertilization age.

considered **totipotent** (capable of forming a complete embryo) up to the 4- to 8-cell stage (important when considering monozygotic twinning).

- Blastomeres form a morula by undergoing compaction, that is, tight junctions are formed between the cells in the outer cell mass, thereby sealing off the inner cell mass. Uvomorulin, a glycoprotein found on the surface of blastomeres, is involved in compaction.
- **B. Blastocyst formation** involves fluid secreted within the morula that forms the **blastocyst cavity**. The conceptus is now called a **blastocyst**.
 - 1. The inner cell mass is now called the **embryoblast** (becomes the embryo).
 - 2. The outer cell mass is now called the **trophoblast** (becomes the fetal portion of the placenta).
- **C. Zona pellucida degeneration** occurs by day 4 after conception. The zona pellucida must degenerate for implantation to occur.

III. IMPLANTATION (FIGURE 2.1)

The blastocyst usually implants within the **posterior superior wall of the uterus** by day 7 after fertilization. Implantation occurs in the **functional layer of the endometrium** during the

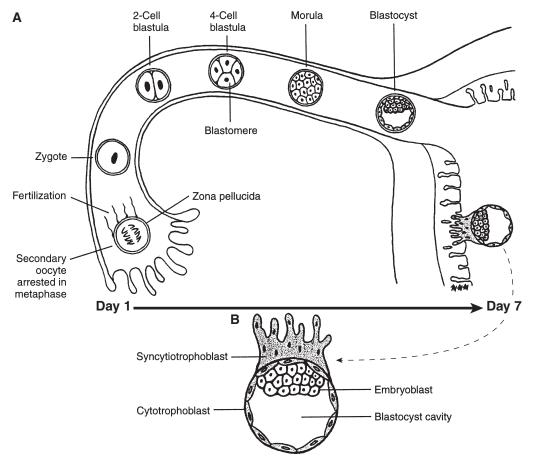


FIGURE 2.1. (A) The stages of human development during week 1. (B) A day 7 blastocyst.

progestational (secretory) phase of the menstrual cycle. The trophoblast proliferates and differentiates into the **cytotrophoblast** and **syncytiotrophoblast**. Failure of implantation may involve immune rejection (graft-versus-host reaction) of the antigenic conceptus by the mother.

IV. CLINICAL CONSIDERATIONS

A. Ectopic tubal pregnancy (ETP)

- **1.** ETP occurs when the blastocyst implants within the uterine tube due to **delayed transport**.
- 2. The **ampulla of the uterine tube** is the most common site of an ectopic pregnancy. The **rectouterine pouch (pouch of Douglas)** is a common site for an ectopic abdominal pregnancy.
- 3. ETP is most commonly seen in women with endometriosis or pelvic inflammatory disease.
- **4.** ETP leads to uterine tube rupture and hemorrhage if surgical intervention (i.e., salpingectomy) is not performed.
- 5. ETP presents with abnormal uterine bleeding, unilateral pelvic pain, increased levels of human chorionic gonadotropin (hCG) (but lower than originally expected with uterine implantation pregnancy), and a massive first-trimester bleed.
- **6.** ETP must be differentially diagnosed from **appendicitis**, an **aborting intrauterine pregnancy**, or a **bleeding corpus luteum** of a normal intrauterine pregnancy.

B. Testicular teratocarcinoma (TCC)

- **1.** TTC is a germ cell neoplasm. In its early histologic stages, a testicular teratocarcinoma resembles a blastocyst with three primary germ layers and may be loosely referred to as "male pregnancy."
- **2.** TCC contains well-differentiated cells and structures from each of the three primary germ layers: for example, colon glandular tissue (endoderm), cartilage (mesoderm), and squamous epithelium (ectoderm).
- **3.** TTC also contains undifferentiated pluripotent stem cells called **embryonic carcinoma (EC) cells**.
- **4.** TTC is associated with **elevated** α **-fetoprotein levels**.
- **5.** TTC can be experimentally produced by implanting a blastocyst in an extrauterine site. The ability of blastocysts to form TTC suggests a relationship between the inner cell mass and EC cells. This relationship has been confirmed by isolation of cell lines from blastocysts called **embryonic stem (ES) cells**, which have biochemical characteristics remarkably similar to those of EC cells.

Study Questions for Chapter 2

1. A 20-year-old woman presents at the emergency department with severe abdominal pain on the right side with signs of internal bleeding. She indicated that she has been sexually active without contraception and missed her last menstrual period. Based on this information, which of the following disorders must be included as an option in the diagnosis?

- (A) Ovarian cancer
- **(B)** Appendicitis
- **(C)** Normal pregnancy
- (D) Ectopic tubal pregnancy
- (E) Toxemia of pregnancy

2. When does a secondary oocyte complete its second meiotic division to become a mature ovum?

- (A) At ovulation
- **(B)** Before ovulation
- (C) At fertilization
- (D) At puberty
- (E) Before birth

3. How soon after fertilization occurs within the uterine tube does the blastocyst begin implantation?

- (A) Within minutes
- (B) By 12 hours
- (C) By day 1
- (D) By day 2
- (E) By day 7

4. Where does the blastocyst normally implant?

- (A) Functional layer of the cervix
- (B) Functional layer of the endometrium
- (C) Basal layer of the endometrium
- (D) Myometrium
- (E) Perimetrium

5. Which of the following events is involved in cleavage of the zygote during week 1 of development?

- **(A)** A series of meiotic divisions forming blastomeres
- (B) Production of highly differentiated blastomeres
- (C) An increased cytoplasmic content of blastomeres
- (D) An increase in size of blastomeres
- (E) A decrease in size of blastomeres

6. Which of the following structures must degenerate for blastocyst implantation to occur?

- (A) Endometrium in progestational phase
- (B) Zona pellucida
- (C) Syncytiotrophoblast
- (D) Cytotrophoblast
- (E) Functional layer of the endometrium

7. Which of the following is the origin of the mitochondrial DNA of all human adult cells?

- (A) Paternal only
- (B) Maternal only
- (C) A combination of paternal and maternal
- **(D)** Either paternal or maternal
- (E) Unknown origin

8. Individual blastomeres were isolated from a blastula at the 4-cell stage. Each blastomere was cultured in vitro to the blastocyst stage and individually implanted into four pseudo-pregnant foster mothers. Which of the following would you expect to observe 9 months later?

- (**A**) Birth of one baby
- (B) Birth of four genetically different babies
- (C) Birth of four genetically identical babies
- **(D)** Birth of four grotesquely deformed babies
- (E) No births

9. Embryonic carcinoma (EC) cells were isolated from a yellow-coated mouse with a teratocarcinoma. The EC cells were then microinjected into the inner cell mass of a blastocyst isolated from a black-coated mouse. The blastocyst was subsequently implanted into the uterus of a white-coated foster mouse. Which of the following would be observed after full-term pregnancy?

- (A) A yellow-coated offspring
- **(B)** A black-coated offspring
- (C) A white-coated offspring
- **(D)** A yellow- and black-coated offspring
- (E) A yellow- and white-coated offspring

10. In oogenesis, which of the following events occurs immediately following the completions of meiosis II?

- (A) Degeneration of the zona pellucida
- (B) Sperm penetration of the corona radiata
- (C) Formation of a female pronucleus
- **(D)** Appearance of the blastocyst
 - (E) Completion of cleavage

Answers and Explanations

- **1. D.** Ectopic tubal pregnancy must always be an option in the diagnosis when a woman in her reproductive years presents with such symptoms. Ninety percent of ectopic implantations occur in the uterine tube. Ectopic tubal pregnancies result in rupture of the uterine tube and internal hemorrhage, which presents a major threat to the woman's life. The uterine tube and embryo must be surgically removed. The symptoms may sometimes be confused with appendicitis.
- **2. C.** At ovulation, a secondary oocyte begins meiosis II, but this division is arrested at metaphase. The secondary oocyte will remain arrested in metaphase until a sperm penetrates it at fertilization. Therefore, the term "mature ovum" is somewhat of a misnomer because it is a secondary oocyte that is fertilized, and, once fertilized, the new diploid cell is known as a zygote. If fertilization does not occur, the secondary oocyte degenerates.
- 3. E. The blastocyst begins implantation by day 7 after fertilization.
- **4. B.** The blastocyst implants in the functional layer of the uterine endometrium. The uterus is composed of the perimetrium, myometrium, and endometrium. Two layers are identified within the endometrium: (1) the functional layer, which is sloughed off at menstruation, and (2) the basal layer, which is retained at menstruation and serves as the source of regeneration of the functional layer. During the progestational phase of the menstrual cycle, the functional layer undergoes dramatic changes; uterine glands enlarge and vascularity increases in preparation for blastocyst implantation.
- **5. E.** Cleavage is a series of mitotic divisions by which the large amount of zygote cytoplasm is successively partitioned among the newly formed blastomeres. Although the number of blastomeres increases during cleavage, the size of individual blastomeres decreases until they resemble adult cells in size.
- **6. B.** The zona pellucida must degenerate for implantation to occur. Early cleavage states of the blastula are surrounded by a zona pellucida, which prevents implantation in the uterine tube.
- **7. B.** The mitochondrial DNA of all human adult cells is of maternal origin only. In human fertilization, the entire sperm enters the secondary oocyte cytoplasm. However, sperm mitochondria degenerate along with the sperm's tail. Therefore, only mitochondria present within the secondary oocyte (maternal) remain in the fertilized zygote.
- **8. C.** This scenario would result in four genetically identical children. Blastomeres at the 4to 8-cell stage are totipotent, that is, capable of forming an entire embryo. Since blastomeres arise by mitosis of the same cell (zygote), they are genetically identical. This phenomenon is important in explaining monozygotic (identical) twins. About 30% of monozygotic twins arise by early separation of blastomeres. The remaining 70% originate at the end of week 1 of development by a splitting of the inner cell mass.
- **9. D.** This scenario would result in a yellow- and black-coated offspring. Because EC cells and inner cell mass cells have very similar biochemical characteristics, they readily mix with each other, and development proceeds unencumbered. Because the mixture contains cells with yellow-coat genotype and black-coat genotype, offspring with coats of two colors (yellow and black) will be produced. The offspring are known as mosaic mice.
- **10. C.** The secondary oocyte is arrested in metaphase of meiosis II, and it will remain in this meiotic stage until fertilization occurs. Following fertilization, the secondary oocyte completes meiosis II, forming a mature ovum and a polar body. The nucleus of the mature ovum is called the female pronucleus, which fuses with the male pronucleus to form a zygote.

chapter

3

Week 2 of Human Development (Days 8–14)

I. FURTHER DEVELOPMENT OF THE EMBRYOBLAST (FIGURE 3.1)

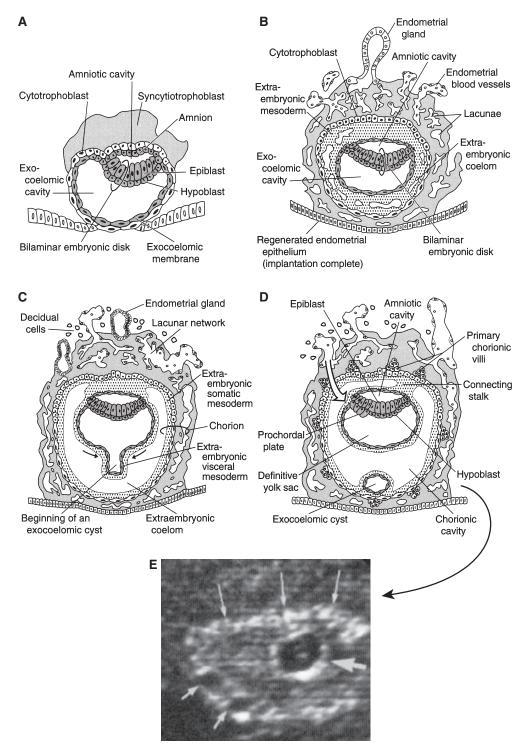
During this time period, the embryoblast differentiates into two distinct cellular layers: the dorsal **epiblast** layer (columnar cells) and the ventral **hypoblast** layer (cuboidal cells). The epiblast and hypoblast together form a flat, ovoid-shaped disk known as the **bilaminar embryonic disk**. Within the epiblast, clefts begin to develop and eventually coalesce to form the **amniotic cavity**. Hypoblast cells begin to migrate and line the inner surface of the cytotrophoblast, forming the **exocoelomic membrane**, which delimits a space called the **exocoelomic cavity** (or **primitive yolk sac**). This space is later called the **definitive yolk sac** when a portion of the exocoelomic cavity is pinched off as an **exocoelomic cyst**. At the future site of the mouth, hypoblast cells become columnar shaped and fuse with epiblast cells to form a circular, midline thickening called the **prochordal plate**.

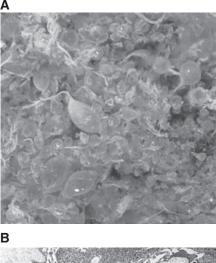
II. FURTHER DEVELOPMENT OF THE TROPHOBLAST (FIGURE 3.1)

- A. Syncytiotrophoblast. The syncytiotrophoblast is the outer multinucleated zone of the trophoblast where no mitosis occurs (i.e., it arises from the cytotrophoblast). During this time period, the syncytiotrophoblast continues its invasion of the endometrium, thereby eroding endometrial blood vessels and endometrial glands. Lacunae form within the syncytiotrophoblast and become filled with maternal blood and glandular secretions. In addition, endometrial stromal cells (decidual cells) at the site of implantation become filled with glycogen and lipids and also supply nutrients to the embryoblast. The isolated lacunae fuse to form a lacunar network through which maternal blood flows, thus establishing early uteroplacental circulation. Although a primitive circulation is established between the uterus and future placenta, the embryoblast receives its nutrition via diffusion only at this time.
- B. Cytotrophoblast. The cytotrophoblast is mitotically active as new cytotrophoblastic cells migrate into the syncytiotrophoblast, thereby fueling its growth. In addition, cytotrophoblastic cells also produce local mounds called primary chorionic villi that bulge into the surrounding syncytiotrophoblast.

III. DEVELOPMENT OF EXTRAEMBRYONIC MESODERM (FIGURE 3.1)

The extraembryonic mesoderm develops from the epiblast and consists of loosely arranged cells that fill the space between the exocoelomic membrane and the cytotrophoblast. Large




FIGURE 3.1. (A) A day 8 blastocyst is shown partially implanted into the endometrium. Extraembryonic mesoderm (EEM) has not formed yet. (B) A day 12 blastocyst is shown completely implanted within the endometrium, and epithelium has regenerated. This type of implantation is known as interstitial implantation. EEM begins to form. (C) A day 13 blastocyst. A lacunar network forms, establishing an early uteroplacental circulation. An exocoelomic cyst begins to pinch off (*small arrows*). (D) A day 14 blastocyst. The embryoblast can be described as two balloons (amniotic cavity and yolk sac) pressed together at the bilaminar embryonic disk. The *curved open arrow* indicates that the embryoblast receives maternal nutrients via diffusion. (E) A sonogram at about week 3 shows a hyperechoic rim representing the chorion (*thick arrow*) surrounding the chorionic cavity (or gestational sac). Within the chorionic cavity, two tiny cystic areas (i.e., the amnion and yolk sac) separated by a thin echogenic line (i.e., embryonic disk) can be observed. Note the hyperechoic base of the endometrium (*long arrows*) and two endometrial cysts (*short arrows*).

spaces develop in the extraembryonic mesoderm and coalesce to form the **extraembryonic coelom**. The extraembryonic coelom divides the extraembryonic mesoderm into the **extraembryonic somatic mesoderm** and **extraembryonic visceral mesoderm**.

The extraembryonic somatic mesoderm lines the trophoblast, forms the connecting stalk, and covers the amnion. The extraembryonic visceral mesoderm covers the yolk sac. As soon as the extraembryonic somatic mesoderm and extraembryonic visceral mesoderm form, one can delineate the **chorion**, which consists of the extraembryonic somatic mesoderm, cytotrophoblast, and syncytiotrophoblast. As the chorion is delineated, the extraembryonic coelom is now called the **chorionic cavity**. The conceptus is suspended by the **connecting stalk** within the chorionic cavity.

IV. CLINICAL CONSIDERATIONS

- A. Human chorionic gonadotropin (hCG) is a glycoprotein produced by the syncytiotrophoblast, which stimulates the production of progesterone by the corpus luteum (i.e., maintains corpus luteum function). This is clinically significant because progesterone produced by the corpus luteum is essential for the maintenance of pregnancy until week 8. The placenta then takes over progesterone production. hCG can be assayed in maternal blood at day 8 or maternal urine at day 10 and is the basis of pregnancy testing. hCG is detectable throughout a pregnancy. Low hCG values may predict a spontaneous abortion or indicate an ectopic pregnancy. Elevated hCG values may indicate a multiple pregnancy, hydatidiform mole, or gestational trophoblastic neoplasia.
- B. RU-486 (mifepristone; Mifeprex) initiates menstruation when taken within 8–10 weeks of the start of the last menstrual period. If implantation of a conceptus has occurred, the conceptus will be sloughed along with the endometrium. RU-486 is a progesterone-receptor antagonist (blocker) used in conjunction with misoprostol (Cytotec; a prostaglandin E₁ [PGE₁] analogue) and is 96% effective at terminating pregnancy.
- C. Hydatidiform mole (complete or partial; Figure 3.2) represents an abnormal placenta characterized by marked enlargement of chorionic villi. A complete mole is distinguished from a partial mole by the amount of chorionic villous involvement. The hallmarks of a complete mole include: gross, generalized edema of chorionic villi forming grape-like, transparent vesicles, hyperplastic proliferation of surrounding trophoblastic cells, and absence of an embryo/fetus. Clinical signs diagnostic of a mole include preeclampsia during the first trimester, elevated hCG levels (>100,000 mIU/mL), and an enlarged uterus with bleeding. Three percent to 5% of moles develop into gestational trophoblastic neoplasia, so followup visits after a mole is detected are essential. The photograph (Figure 3.2A) shows gross edema of the chorionic villi forming grape-like vesicles. The light micrograph (Figure 3.2B) shows edema of the chorionic villi (cv) surrounded by hyperplastic trophoblastic cells (tc).

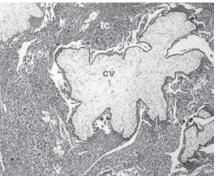
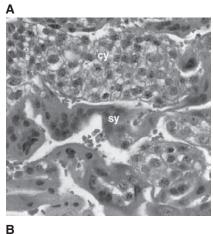



FIGURE 3.2. Hydatidiform mole.

- D. Gestational trophoblastic neoplasia (GTN; choriocarcinoma; Figure 3.3) is a malignant tumor of the trophoblast that may occur following a normal or ectopic pregnancy, abortion, or hydatidiform mole. With a high degree of suspicion, elevated hCG levels are diagnostic. Nonmetastatic GTN (i.e., confined to the uterus) is the most common form of the neoplasia, and treatment is highly successful. However, the prognosis of metastatic GTN is poor if it spreads to the liver or brain. The light micrograph (Figure 3.3A) shows the distinctive alternating arrangement of mononuclear cytotrophoblastic cells (cy) and multinucleated syncytiotrophoblastic cells (sy). The photograph (Figure 3.3B) shows hemorrhagic nodules metastatic to the liver. This is due to the rapid proliferation of trophoblastic cells combined with marked propensity to invade blood vessels. The central portion of the lesion is hemorrhagic and necrotic, with only a thin rim of trophoblastic cells at the periphery.
- E. Oncofetal antigens (Table 3.1) are cell surface antigens that normally appear only on embryonic cells but for unknown reasons are re-expressed in human malignant cells. Monoclonal antibodies directed against specific oncofetal antigens provide an avenue for cancer therapy.

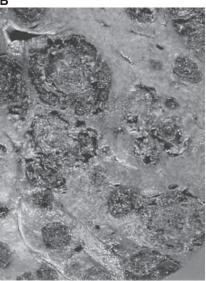


FIGURE 3.3. Gestational trophoblastic neoplasia.

Antigen	Associated Tumor	
α -Fetoprotein (AFP)	Hepatocellular carcinoma, germ cell neoplasms, yolk sac or endodermal sinus tumors of the testicle or ovary	
α -1-Antitrypsin (AAT)	Hepatocellular carcinoma, yolk sac or endodermal sinus tumors of the testicle or ovary	
Carcinoembryonic antigen (CEA)	Colorectal cancer, pancreatic cancer, breast cancer, and small cell cancer of the lung; bad prognostic sign if elevated preoperatively	
β_2 -Microglobulin	Multiple myeloma (excellent prognostic factor), light chains in urine (Bence Jones protein)	
CA 125	Surface-derived ovarian cancer	
CA 15-3	Breast cancer	
CA 19-9	Pancreatic cancer (excellent marker)	
Neuron-specific enolase (NSE)	Small cell carcinoma of the lung, seminoma, neuroblastoma	
Prostate-specific antigen (PSA)	Prostate cancer	
Human chorionic gonadotropin (hCG)	Trophoblastic tumors; hydatidiform mole (benign); choriocarcinoma (malignant)	
Bombesin	Small cell carcinoma of the lung, neuroblastoma	
Lactate dehydrogenase (LDH)	Hodgkin disease	

CA, cancer antigen.

Study Questions for Chapter 3

1. Which of the following components plays the most active role in invading the endometrium during blastocyst implantation?

- (A) Epiblast
- (B) Syncytiotrophoblast
- (C) Hypoblast
- (D) Extraembryonic somatic mesoderm
- (E) Extraembryonic visceral mesoderm

2. Between which two layers is the extraembryonic mesoderm located?

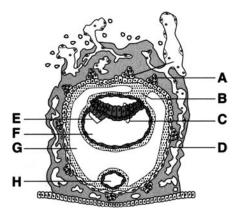
- (A) Epiblast and hypoblast
- **(B)** Syncytiotrophoblast and cytotrophoblast
- (C) Syncytiotrophoblast and endometrium
- **(D)** Exocoelomic membrane and syncytiotrophoblast
- (E) Exocoelomic membrane and cytotrophoblast

3. During week 2 of development, the embryoblast receives its nutrients via

- (A) diffusion
- (B) osmosis
- (C) reverse osmosis
- (D) fetal capillaries
- (E) yolk sac nourishment

4. The prochordal plate marks the site of the future

- (A) umbilical cord
- (B) heart
- (C) mouth
- (D) anus
- (E) nose


5. Which of the following are components of the definitive chorion?

- (A) Extraembryonic somatic mesoderm and epiblast
- (B) Extraembryonic somatic mesoderm and cytotrophoblast
- **(C)** Extraembryonic somatic mesoderm and syncytiotrophoblast
- (D) Extraembryonic somatic mesoderm, cytotrophoblast, and syncytiotrophoblast
- (E) Extraembryonic visceral mesoderm, cytotrophoblast, and syncytiotrophoblast

6. A 16-year-old girl presents on May 10 in obvious emotional distress. On questioning, she relates that on May 1 she experienced sexual intercourse for the first time, without using any means of birth control. Most of her anxiety stems from her fear of pregnancy. What should the physician do to alleviate her fear?

- (A) Prescribe diazepam and wait to see if she misses her next menstrual period
- (B) Use ultrasonography to document pregnancy
- (C) Order a laboratory assay for serum hCG
- **(D)** Order a laboratory assay for serum progesterone
- (E) Prescribe diethylstilbestrol ("morningafter pill")
- **7.** Carcinoembryonic antigen (CEA) is an oncofetal antigen that is generally associated with which one of the following tumors?
- (A) Hepatoma
- (B) Germ cell tumor
- (C) Squamous cell carcinoma
- (**D**) Colorectal carcinoma
- (E) Teratocarcinoma

For each of Questions 8–13 concerning a 14-day-old blastocyst, select the most appropriate structure in the accompanying diagram.

8. Future site of the mouth

9. Forms definitive structures found in the adult

- 10. Chorion
- **11**. Chorionic cavity
- 12. Primary chorionic villi
- 13. Connecting stalk

14. A 42-year-old woman presents with complaints of severe headaches, blurred vision, slurred speech, and loss of muscle coordination. Her last pregnancy 5 years ago resulted in a hydatidiform mole. Laboratory results show a high hCG level. Which of the following conditions is a probable diagnosis?

- (A) Vasa previa
- (B) Placenta previa
- (C) Succenturiate placenta
- (D) Choriocarcinoma
- (E) Membranous placenta

15. At what location does the amniotic cavity develop?

- (A) Between the cytotrophoblast and syncytiotrophoblast
- **(B)** Within the extraembryonic mesoderm
- (C) Between the endoderm and mesoderm
- **(D)** Within the hypoblast
- (E) Within the epiblast

16. At the end of week 2 of development (day 14), what is the composition of the embryonic disk?

- (A) Epiblast only
- (B) Epiblast and hypoblast
- (C) Ectoderm and endoderm
- (D) Ectoderm, mesoderm, and endoderm
- (E) Epiblast, mesoderm, and hypoblast

Answers and Explanations

- **1. B.** The syncytiotrophoblast plays the most active role in invading the endometrium of the mother's uterus. During the invasion, endometrial blood vessels and endometrial glands are eroded and a lacunar network is formed.
- **2. E.** The extraembryonic mesoderm is derived from the epiblast and is located between the exocoelomic membrane and the cytotrophoblast. The overall effect is to completely separate the embryoblast from the trophoblast, with the extraembryonic mesoderm serving as a conduit (connection) between them.
- **3. A.** During week 2 of development, the embryoblast receives its nutrients from endometrial blood vessels, endometrial glands, and decidual cells via diffusion. Diffusion of nutrients does not pose a problem, given the small size of the blastocyst during week 2. Although the beginnings of a uteroplacental circulation are established during week 2, no blood vessels have yet formed in the extraembryonic mesoderm to carry nutrients directly to the embryoblast (this occurs in week 3).
- **4. C.** The prochordal plate is a circular, midline thickening of hypoblast cells that are firmly attached to the overlying epiblast cells. The plate will eventually develop into a membrane called the oropharyngeal membrane at the site of the future mouth. It is interesting to note that at this early stage of development the cranial versus caudal region of the embryo is established by the prochordal plate, and since the prochordal plate is located in the midline, bilateral symmetry is also established.
- **5. D.** The definitive chorion consists of three components: extraembryonic somatic mesoderm, cytotrophoblast, and syncytiotrophoblast. The chorion defines the chorionic cavity in which the embryoblast is suspended and is vital in the formation of the placenta.
- **6. C.** Human chorionic gonadotropin (hCG) can be assayed in maternal serum at day 8 of development and in urine at day 10. If this teenager is pregnant, the blastocyst would be in week 2 of development (day 10). Laboratory assay of hCG in either the serum or urine can be completed; however, serum hCG might be more reliable. It is important to note that if she is pregnant, she will not miss a menstrual period until May 15, at which time the embryo will be entering week 3 of development.
- **7. D.** Oncofetal antigens are normally expressed during embryonic development, remain unexpressed in normal adult cells, but are re-expressed on transformation to malignant neoplastic tissue. CEA is associated with colorectal carcinoma.
- **8. E.** The prochordal plate indicates the site of the future mouth. At this early stage of development, the orientation of the embryo in the cranial versus caudal direction is established. The prochordal plate is a thickening of hypoblast cells that are firmly attached to the epiblast cells.
- **9. C.** The bilaminar embryonic disk develops definitive adult structures after gastrulation occurs, as contrasted with the trophoblast, which is involved in placental formation.
- **10. D.** The chorion consists of three layers—extraembryonic somatic mesoderm, cytotrophoblast, and syncytiotrophoblast. The chorion is vital in the formation of the placenta.
- **11. G.** The chorion forms the walls of the chorionic cavity in which the conceptus is suspended by the connecting stalk. Note that the inner lining of the chorionic cavity is extraembryonic mesoderm.
- **12. A.** The cytotrophoblast is mitotically active, so that local mounds of cells (primary chorionic villi) form that bulge into the surrounding syncytiotrophoblast. As development

continues, primary chorionic villi form secondary chorionic villi and finally tertiary chorionic villi as part of placental formation.

- **13. B.** The extraembryonic mesoderm can be thought of as initially forming in a continuous layer and then splitting as isolated cavities begin to appear everywhere except dorsally near the amniotic cavity and epiblast. When the isolated cavities coalesce, the extraembry-onic coelom (or chorion cavity) and connecting stalk are formed.
- **14. D.** After a hydatidiform mole, it is very important to assure that all the invasive trophoblastic tissue is removed. High levels of hCG are a good indicator of retained trophoblastic tissue because such tissue produces this hormone. In this case, the trophoblastic tissue has developed into a malignant choriocarcinoma and metastasized to the brain, causing her symptoms of headache, blurred vision, and so on.
- **15. E.** The amniotic cavity develops within the epiblast, and it is a cavity that contains the embryo and amniotic fluid.
- **16. B.** The embryoblast consists of the two distinct cell layers (epiblast and hypoblast) at the end of development week 2 (day 14) and forms the bilaminar embryonic disk.

chapter

Embryonic Period (Weeks 3–8)

I. GENERAL CONSIDERATIONS

4

- **A.** By the end of the embryonic period, all major organ systems have begun to develop, although functionality may be minimal.
- **B.** The development of the cardiovascular system is essential for obvious reasons, but, in particular, because diffusion of nutrients by the early uteroplacental circulation can no longer satisfy the nutritional needs of the rapidly developing embryo.
- **C.** During the embryonic period, folding of the embryo occurs in two distinct planes. **Craniocaudal folding** is caused by the growth of the central nervous system (CNS) and the amnion. **Lateral folding** is caused by the growth of the somites, amnion, and other components of the lateral body wall.
- **D.** Both the craniocaudal folding and lateral folding change the shape of the embryo from a two-dimensional disk to a three-dimensional cylinder.
- E. By the end of week 8, the embryo has a distinct human appearance.
- **F.** During the embryonic period, the basic segmentation of the human embryo in the craniocaudal direction is controlled by the **Hox (homeobox) complex** of genes.
- **G**. The development of each individual organ system will be reviewed in forthcoming chapters. However, it is important to realize that all organ systems develop simultaneously during the embryonic period.

II. FURTHER DEVELOPMENT OF THE EMBRYOBLAST

A. Gastrulation (Figure 4.1)

- **1.** Gastrulation is the process that establishes the three definitive germ layers of the embryo (**ectoderm**, **intraembryonic mesoderm**, and **endoderm**), forming a **trilaminar embryonic disk** by day 21 of development.
- 2. These three germ layers give rise to all the tissues and organs of the adult.
- **3**. Gastrulation is first indicated by the formation of the **primitive streak**, caused by a proliferation of epiblast cells.
- 4. The primitive streak consists of the primitive groove, primitive node, and primitive pit.
- **5.** Located caudal to the primitive streak is the future site of the anus, known as the **cloacal membrane**, where epiblast and hypoblast cells are fused.

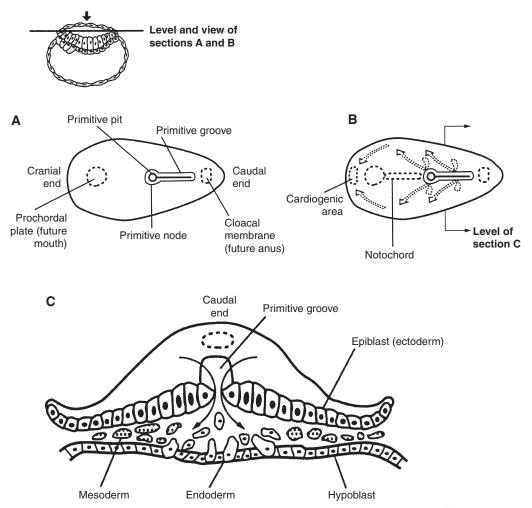
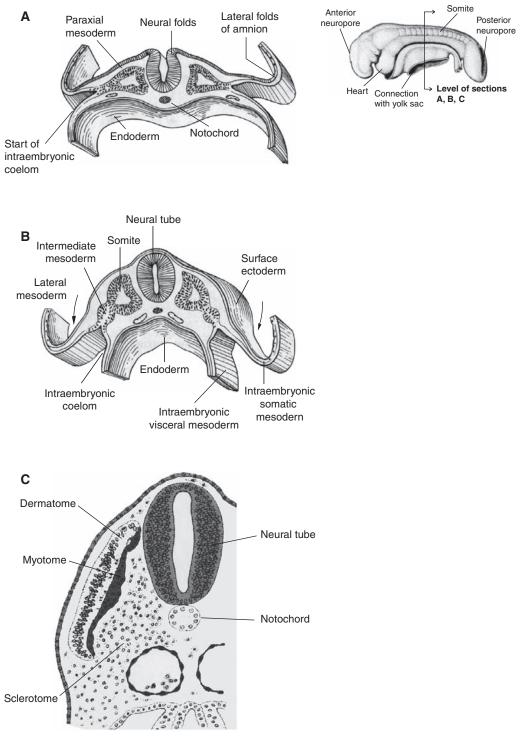



FIGURE 4.1. Schematic representation of gastrulation. Embryoblast at the upper left is for orientation. (A) Dorsal view of the epiblast. (B) *Dotted arrows* show the migration of cells through the primitive streak during gastrulation. (C) Cross section showing the migration of cells that will form the intraembryonic mesoderm and displace the hypoblast to form the endoderm. Epiblast cells begin to migrate to the primitive streak and invaginate into a space between the epiblast and hypoblast. Some of these migrating epiblast cells displace the hypoblast to form the definitive endoderm. The remainder of the epiblast cells migrates laterally, and along the midline to form the definitive intraembryonic mesoderm. After the formation of the endoderm and intraembryonic mesoderm, the epiblast is called the definitive ectoderm.

- **6.** The ectoderm, intraembryonic mesoderm, and endoderm of the trilaminar embryonic disk are all derived from the epiblast. The term *intraembryonic mesoderm* describes the germ layer that forms during week 3 (gastrulation), in contrast to the *extraembryonic mesoderm*, which formed during week 2.
- **7.** Intraembryonic mesoderm forms various tissues and organs found in the adult, whereas extraembryonic mesoderm is involved in placenta formation. In this regard, later chapters do not use the term "intraembryonic mesoderm" when discussing tissue and organ development of the adult, but instead shorten the term to "mesoderm."

B. Changes involving intraembryonic mesoderm (Figure 4.2)

 Paraxial mesoderm is a thick plate of mesoderm located on each side of the midline. Paraxial mesoderm becomes organized into segments known as **somitomeres**, which form in a craniocaudal sequence. **Somitomeres 1–7** do not form somites but contribute mesoderm to the pharyngeal arches. The remaining somitomeres further condense in a

FIGURE 4.2. Schematic representation showing changes involving intraembryonic mesoderm. Picture in the upper right is for orientation. (A) Cross section at day 19. (B) Cross section at day 21, with *arrows* indicating lateral folding of the embryo. (C) Cross section showing differentiation of the somite.

craniocaudal sequence to form **42–44 pairs of somites**. The first pair of somites forms on day 20, and new somites appear at a rate of 3 per day. The caudal-most somites eventually disappear to give a final count of approximately **35 pairs of somites**. The number of somites is one of the criteria for determining the age of the embryo. Somites further differentiate into the following components:

- a. Sclerotome forms the cartilage and bone components of the vertebral column.
- **b.** Myotome forms epimeric and hypomeric muscles.
- c. Dermatome forms dermis and subcutaneous area of skin.
- **2. Intermediate mesoderm** is a longitudinal dorsal ridge of mesoderm located between the paraxial mesoderm and lateral mesoderm. This ridge forms the **urogenital ridge**, which is involved in the formation of the future kidneys and gonads.
- Lateral mesoderm is a thin plate of mesoderm located along the lateral sides of the embryo. Large spaces develop in the lateral mesoderm and coalesce to from the intraembryonic coelom. The intraembryonic coelom divides the lateral mesoderm into two layers:

 a. Intraembryonic somatic mesoderm (also called somatopleure)
 - **b.** Intraembryonic visceral mesoderm (also called visceropleure or splanchnopleure)
- **4. Notochord** is a solid cylinder of mesoderm extending in the midline of the trilaminar embryonic disk from the primitive node to the prochordal plate. The notochord has a number of important functions, which include the following:
 - **a**. It induces the overlying ectoderm to differentiate into neuroectoderm to form the neural plate.
 - **b.** It induces the formation of the vertebral body of each of the vertebrae.
 - c. It forms the nucleus pulposus of each intervertebral disk.
- **5. Cardiogenic region** is a horseshoe-shaped region of mesoderm located at the cranial end of the trilaminar embryonic disk rostral to the prochordal plate. This region is involved in the formation of the future heart.
- 6. Specific derivatives of mesoderm are indicated in Table 4.1.
- **C. Changes involving ectoderm.** The major change involving a specific portion of ectoderm is its induction by the underlying notochord to differentiate into neuroectoderm and neural crest cells, thereby forming the future nervous system. Specific derivatives of ectoderm are indicated in Table 4.1.
- D. Changes involving endoderm. Specific derivatives of endoderm are indicated in Table 4.1.

III. VASCULOGENESIS (DE NOVO BLOOD VESSEL FORMATION)

Vasculogenesis occurs in two general locations as follows.

A. In extraembryonic mesoderm:

- 1. Angiogenesis occurs first within extraembryonic visceral mesoderm around the yolk sac on day 17.
- **2.** By day 21, angiogenesis extends into extraembryonic somatic mesoderm located around the connecting stalk to form the **umbilical vessels** and in secondary villi to form **tertiary chorionic villi**.
- **3.** Angiogenesis occurs by a process by which extraembryonic mesoderm differentiates into **angioblasts**, which form clusters known as **angiogenic cell clusters**.
- **4**. The angioblasts located at the periphery of angiogenic cell clusters give rise to **endothelial cells**, which fuse with each other to form small blood vessels.

B. In intraembryonic mesoderm:

1. Blood vessels form within the embryo by the same mechanism as in extraembryonic mesoderm.

Germ Layer Derivatives

Ectoderm Epidermis, hair, nails, sweat and sebaceous glands Utricle, semicircular ducts, vestibular ganglion of CN VIII Saccule, cochlear duct (organ of Corti), spiral ganglion of CN VIII Olfactory placode, CN I Ameloblasts (enamel of teeth) Adenohypophysis Lens of eye Anterior epithelium of cornea Acinar cells of parotid gland Acinar cells of mammary gland Epithelial lining of: Lower anal canal Distal part of male urethra External auditory meatus

Neuroectoderm

All neurons within brain and spinal cord Retina, iris epithelium, ciliary body epithelium, optic nerve (CN II), optic chiasm, optic tract, dilator and sphincter pupillae muscles Astrocytes, oligodendrocytes, ependymocytes, tanycytes, choroid plexus cells Neurohypophysis Pineal gland

Neural Crest

Cranial neural crest cells: Pharyngeal arch skeletal and connective tissue components Bones of neurocranium Pia and arachnoid Parafollicular (C) cells of thyroid Aorticopulmonary septum Odontoblasts (dentin of teeth) Sensory ganglia of CN V, CN VII, CN IX, CN X Ciliary (CN III), pterygopalatine (CN VII), submandibular (CN VII), and otic (CN IX) parasympathetic ganglia Trunk neural crest cells: Melanocytes Schwann cells Chromaffin cells of adrenal medulla Dorsal root ganglia Sympathetic chain ganglia Prevertebral sympathetic ganglia Enteric parasympathetic ganglia of the gut (Meissner and Auerbach; CN X)

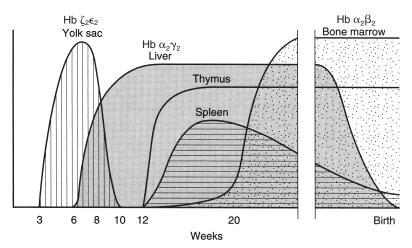
Abdominal/pelvic cavity parasympathetic ganglia

CN, cranial nerve.

Mesoderm

1/3 of vagina

Muscle (smooth, cardiac, skeletal) Extraocular muscles, ciliary muscle of eye, iris stroma, ciliary body stroma Substantia propria of cornea, corneal endothelium, sclera, choroid Muscles of tongue (occipital somites) Pharyngeal arch muscles Laryngeal cartilages Connective tissue Dermis and subcutaneous layer of skin Bone and cartilage Dura mater Endothelium of blood and lymph vessels Red blood cells, white blood cells, microglia, and Kupffer cells Spleen Kidney Adrenal cortex Testes, epididymis, ductus deferens, seminal vesicle, ejaculatory duct Ovary, uterus, uterine tubes, superior


Hepatocytes Principal and oxyphil cells of parathyroid Thyroid follicular cells thymus Epithelial reticular cells of thymus Acinar and islet cells of pancreas Acinar cells of submandibular and sublingual glands Epithelial lining of: Gastrointestinal tract Trachea, bronchii, lungs **Biliary** apparatus Urinary bladder, female urethra, most of male urethra Inferior 2/3 of vagina Auditory tube, middle ear cavity Crypts of palatine tonsils

Endoderm

2. Eventually blood vessels formed in the extraembryonic mesoderm become continuous with blood vessels within the embryo, thereby establishing a blood vascular system between the embryo and placenta.

IV. HEMATOPOIESIS (BLOOD CELL FORMATION; FIGURE 4.3)

Hematopoiesis first occurs within the extraembryonic visceral mesoderm around the yolk sac during week 3 of development. During this process, angioblasts within the center of angiogenic cell clusters give rise to primitive blood cells. Beginning at week 5, hematopoiesis is taken over by a sequence of embryonic organs: **liver**, **spleen**, **thymus**, and **bone marrow**.

FIGURE 4.3. A schematic diagram showing the contribution of various organs to hematopoiesis during development. During the period of yolk sac hematopoiesis, the earliest **embryonic form** of hemoglobin is synthesized, called **hemoglobin** $\xi_{z}e_{2}$. During the period of liver hematopoiesis, the **fetal form** of hemoglobin (**HbF**) is synthesized, called **hemoglobin** $\alpha_{z}\gamma_{2}$. During the period of bone marrow hematopoiesis (about week 30), the **adult form** of hemoglobin (**HbA**) is synthesized, called **hemoglobin** $\alpha_{z}\gamma_{2}$. and gradually replaces hemoglobin $\alpha_{z}\gamma_{2}$. **Hemoglobin** $\alpha_{z}\gamma_{z}$ is the predominant form of hemoglobin out into the adult form of hemoglobin and thereby "pulls" oxygen from the maternal blood into fetal blood.

V. CLINICAL CONSIDERATIONS

- A. Chordoma (CD) is a benign or malignant tumor that arises from remnants of the notochord. CD may be found either intracranially or in the sacral region and occurs more commonly in men late in adult life (age 50 years).
- **B.** First missed menstrual period is usually the first indication of pregnancy. Week 3 of embryonic development coincides with the first missed menstrual period. Note that at this time the embryo has already undergone 2 weeks of development. It is crucial that the woman become aware of a pregnancy as soon as possible because the embryonic period is a period of high susceptibility to teratogens.
- **C.** Thalassemia syndromes are a heterogeneous group of genetic defects characterized by the lack or decreased synthesis of either the α -globin chain (α -thalassemia) or β -globin chain (β -thalassemia) of hemoglobin $\alpha_2\beta_2$. α -Thalassemia is an autosomal recessive genetic disorder most commonly caused by a deletion of the *HBA1* gene and/or the *HBA2* gene on

chromosome 16p13.3 for the $\underline{\alpha}_1$ -globin subunit of <u>hemoglobin</u> and $\underline{\alpha}_2$ -globin subunit of <u>hemoglobin</u>, respectively. β -Thalassemia is an autosomal recessive genetic disorder caused by >200 missense or frameshift mutations in the *HBB* gene on chromosome 11p15.5 for the β -globin subunit of hemoglobin.

- 1. Hydrops fetalis is the most severe form of α thalassemia and causes severe pallor, generalized edema, and massive hepatosplenomegaly and invariably leads to intrauterine fetal death.
- β-Thalassemia major (Cooley anemia) is the most severe form of β-thalassemia and causes a severe, transfusion-dependent anemia. It is most common in Mediterranean countries and parts of Africa and Southeast Asia.
- **D.** Hydroxyurea (a cytotoxic drug) has been shown to promote fetal hemoglobin (HbF) production by the reactivation of γ -chain synthesis. Hydroxyurea has been especially useful in the treatment of **sickle cell disease**, in which the presence of HbF counteracts the low oxygen affinity of HbS and inhibits the sickling process.
- E. Sacrococcygeal teratoma (ST; Figure 4.4) is a tumor that arises from remnants of the primitive streak, which normally degenerates and disappears. ST is the most common germ cell tumor of childhood. ST is derived from pluripotent cells of the primitive streak and often contains various types of tissue (e.g., bone, nerve, hair). ST occurs more commonly in female infants and usually becomes malignant during infancy (must be surgically removed by age 6 months). Figure 4.4 shows an infant with a sacrococcygeal teratoma.
- F. Caudal dysplasia (sirenomelia; Figure 4.5) refers to a constellation of syndromes ranging from minor lesions of lower vertebrae to complete fusion of the lower limbs. Caudal dysplasia is caused by abnormal gastrulation, in which the migration of mesoderm is disturbed. It can be associated with various cranial anomalies:
 - **1. VATER,** which includes **v**ertebral defects, **a**nal atresia, **t**racheo**e**sophageal fistula, and **r**enal defects.
 - **2. VACTERL**, which is similar to VATER but also includes **cardiovascular** defects and upper limb defects.

Figure 4.5 shows an infant with caudal dysplasia (sirenomelia).

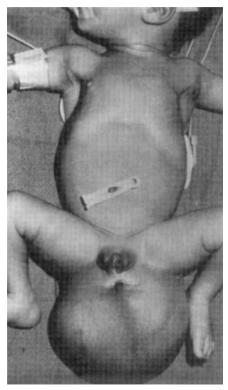


FIGURE 4.4. Sacrococcygeal teratoma.

FIGURE 4.5. Caudal dysplasia (sirenomelia).

Study Questions for Chapter 4

1. Which germ layers are present at the end of week 3 of development (day 21)?

- (A) Epiblast only
- (B) Epiblast and hypoblast
- (C) Ectoderm and endoderm
- (D) Ectoderm, mesoderm, and endoderm
- (E) Epiblast, mesoderm, and hypoblast

2. Which process establishes the three definitive germ layers?

- (A) Neurulation
- (B) Gastrulation
- (C) Craniocaudal folding
- **(D)** Lateral folding
- (E) Angiogenesis

3. The first indication of gastrulation in the embryo is

- (A) formation of the primitive streak
- (B) formation of the notochord
- (C) formation of the neural tube
- (**D**) formation of extraembryonic mesoderm
- (E) formation of tertiary chorionic villi

4. Somites may differentiate into which of the following?

- (A) Urogenital ridge
- (B) Kidneys
- (C) Notochord
- (D) Epimeric and hypomeric muscles
- (E) Epithelial lining of the gastrointestinal tract

5. Intermediate mesoderm will give rise to the

- (A) neural tube
- (B) heart
- (C) kidneys and gonads
- (D) somites
- (E) notochord

6. The developing embryo has a distinct human appearance by the end of

- (A) week 4
- (B) week 5
- (C) week 6
- (D) week 7
- (E) week 8

7. The lateral mesoderm is divided into two distinct layers by the formation of the

- (A) extraembryonic coelom
- (B) intraembryonic coelom
- (C) cardiogenic region
- (D) notochord
- (E) yolk sac

8. Very often the first indication a woman has that she is pregnant is a missed menstrual period. In which week of embryonic development will a woman experience her first missed menstrual period?

- (A) Start of week 3
- (B) Start of week 4
- (C) Start of week 5
- (D) Start of week 8
- (E) End of week 8

9. A female newborn was found to have a large midline tumor in the lower sacral area, which was diagnosed as a sacrococcygeal tumor. Which of the following courses of treatment is recommended for this child?

- (A) Immediate chemotherapy and radiation treatment
- (B) Surgical removal by age 6 months
- (C) Surgical removal at age 4–5 years
- **(D)** Surgical removal at age 13–15 years
- (E) No treatment because this tumor normally regresses with age

10. A woman has her pregnancy suddenly terminated due to intrauterine fetal death. At autopsy, the fetus shows severe pallor, generalized edema, and hepatosplenomegaly. Which of the following would you suspect?

- (A) VATER
- (B) β -Thalassemia minor
- **(C)** β-Thalassemia major
- **(D)** Hydrops fetalis
- (E) VACTERL

11. The specialized group of mesenchymal cells that aggregate to form blood islands centrally and primitive blood vessels peripherally are called

- (A) fibroblasts
- (B) cardiac progenitor cells
- (C) angioblasts
- (D) myoblasts
- (E) osteoblasts

12. The epiblast is capable of forming which of the following germ layers?

- (A) Ectoderm only
- (B) Ectoderm and mesoderm only
- (C) Ectoderm and endoderm only
- (D) Ectoderm, mesoderm, endoderm
- (E) Mesoderm and endoderm only

13. A male newborn has a hemangioma on the left frontotemporal region of his face and scalp. The cells forming the hemangioma are derived from which of the following cell layers?

- (A) Ectoderm only
- (B) Mesoderm only
- (C) Endoderm only
- (D) Ectoderm and mesoderm
- (E) Endoderm and mesoderm

14. Which structure is derived from the same embryonic primordium as the dorsal root ganglia?

- (A) Gonads
- (B) Kidney
- (C) Pineal gland
- (D) Liver
- (E) Adrenal medulla

15. Which structure is derived from the same embryonic primordium as the kidney?

- (A) Gonads
- (B) Epidermis
- (C) Pineal gland
- (D) Liver
- (E) Adrenal medulla

Answers and Explanations

- **1. D.** During week 3 of development, the process of gastrulation, which establishes the three primary germ layers (ectoderm, intraembryonic mesoderm, and endoderm), occurs. The origin of all tissues and organs of the adult can be traced to one of these germ layers because these are whence they "germinate."
- **2. B.** Gastrulation establishes the three primary germ layers during week 3 of development. Neurulation is the process by which neuroectoderm forms the neural plate, which eventually folds to form the neural tube.
- **3. A.** The formation of the primitive streak on the dorsal surface of the bilaminar embryonic disk is the first indication of gastrulation.
- **4. D.** Approximately 35 pairs of somites form. They are derived from a specific subdivision of intraembryonic mesoderm called paraxial mesoderm. Somites differentiate into the components called sclerotome (cartilage and bone of the vertebral column), myotome (epimeric and hypomeric muscle), and dermatome (dermis and subcutaneous area of skin).
- **5. C.** Intermediate mesoderm is a subdivision of intraembryonic mesoderm that forms a longitudinal dorsal ridge called the urogenital ridge from which the kidneys and gonads develop.
- **6. E.** The embryo starts the embryonic period as a two-dimensional disk and ends as a three-dimensional cylinder. This dramatic change in geometry is caused by formation of all the major organ systems. As the organ systems gradually develop during the embryonic period, the embryo appears more and more human-like; it has a distinct human appearance at the end of week 8.
- **7. B.** The lateral mesoderm is a subdivision of intraembryonic mesoderm and initially is a solid plate of mesoderm. The intraembryonic coelom forms in the middle of the lateral mesoderm, thereby dividing it into the intraembryonic somatic mesoderm and intraembryonic visceral mesoderm.
- **8. A.** Given a regular 28-day menstrual cycle, a woman who starts menses on, say, February 1 will ovulate on February 14, and the secondary oocyte will be fertilized, if she becomes pregnant, within 24 hours. So, the zygote undergoes week 1 of development from February 15 to 21. Week 2 of development is from February 22 to 28. On the next day, March 1, the woman would enter her next menstrual cycle if she were not pregnant, but because she is pregnant, she does not menstruate. Therefore, this first missed menstrual period corresponds with the start of week 3 of embryonic development. The embryonic period (week 3–week 8) is a time of high susceptibility to teratogens.
- **9. B.** The preponderance of sacrococcygeal tumors are found in female newborns. Because these tumors develop from pluripotent cells of primitive streak origin, malignancy is of great concern, and the tumor should be surgically removed by age 6 months. Occasionally, these tumors may recur after surgery, demonstrating malignant properties.
- **10. D.** Hydrops fetalis is the most severe form of α -thalassemia, and is a direct result of the lack or decreased synthesis of the α -globin chain of hemoglobin $\alpha_2\beta_2$.
- **11. B.** The angioblasts are the mesenchymal cells that form blood vessels in embryonic development, as well as embryonic blood cells.

36 BRS Embryology

- **12. D.** The epiblast is capable of forming all three germ layers (ectoderm, mesoderm, and endoderm) during gastrulation. Epiblast cells migrate to the primitive streak and invaginate into a space between the epiblast and hypoblast. Some of these epiblast cells displace the hypoblast to form the definitive endoderm. Migrating epiblast cells also form the intraembryonic mesoderm. The remaining epiblast cells form the ectoderm.
- **13. B.** A hemangioma is a vascular tumor that can be present at birth in which the abnormal proliferation of blood vessels leads to a mass resembling a neoplasm. Hemangiomas are mesodermal in origin, in that they are formed by embryonic blood cells and the vascular endothelium formed by angioblasts.
- **14. E.** Both the chromaffin cells of the adrenal medulla and the dorsal root ganglia are derived from neural crest cells.
- **15. A.** Both the kidneys and the gonads are derived from intermediate mesoderm. This longitudinal dorsal ridge of mesoderm forms the gonadal ridge, which is involved with the formation of the future kidneys and gonads.

chapter

5

Cardiovascular System

I. FORMATION OF HEART TUBE (FIGURE 5.1)

- **A.** Lateral plate mesoderm (at the cephalic area of the embryo) will split into a somatic layer and splanchnic layer, thus forming the **pericardial cavity**.
- **B. Precardiac mesoderm** is preferentially distributed to the splanchnic layer and is now called heart-forming regions (HFRs).
- **C.** As lateral folding of the embryo occurs, the HFRs will fuse in the midline to form a continuous sheet of mesoderm.
- **D.** Hypertrophied foregut endoderm secretes **vascular endothelial growth factor (VEGF)**, which induces the sheet of mesoderm to form discontinuous vascular channels that eventually get remodeled into a single **endocardial tube (endocardium)**.
- E. Mesoderm around the endocardium forms the **myocardium**, which secretes a layer of extracellular matrix proteins called **cardiac jelly**.
- F. Mesoderm migrating into the cardiac region from the coelomic wall near the liver forms the **epicardium**.

II. PRIMITIVE HEART TUBE DILATIONS (FIGURE 5.2)

- **A**. Five dilations soon become apparent along the length of the tube, namely the **truncus arteriosus**, **bulbus cordis**, **primitive ventricle**, **primitive atrium**, and **sinus venosus**.
- **B.** These five dilations undergo **dextral looping** and develop into the adult structures of the heart.

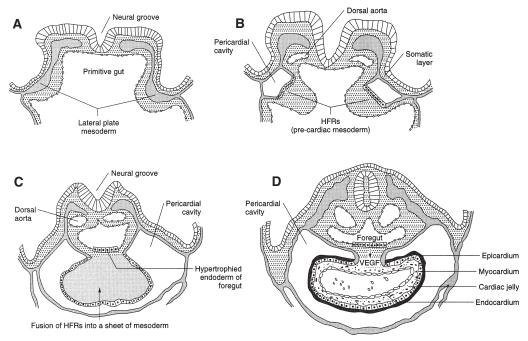
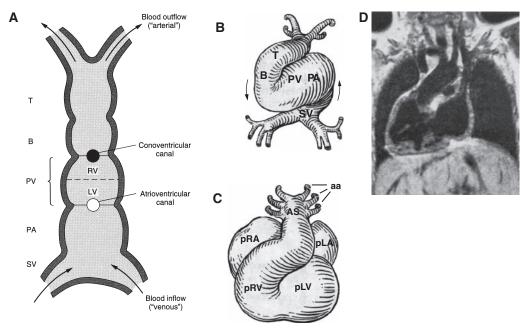



FIGURE 5.1. Schematic diagrams depicting cross sections of an embryo at the level of the developing heart. (A) Formation of lateral plate mesoderm. (B) Splitting of lateral plate mesoderm. (C) Fusion of heart-forming regions (HFRs) in the midline into a sheet of mesoderm. (D) Vascular endothelial growth factor (VEGF) induction of single endocardial tube.

FIGURE 5.2. Schematic diagrams depicting the primitive heart tube and its five dilations. (**A**) At 22 days. Note the location of the atrioventricular canal and conoventricular canal. *Arrows* show the direction of blood flow from the "venous" blood inflow at the sinus venosus to the "arterial" blood outflow at the truncus arteriosus. Note that "venous" blood inflow enters the left ventricle (LV) before it enters the right ventricle (RV). (**B**) At 26 days. Note that the straight heart tube begins dextral looping (*curved arrows*). T = truncus arteriosus; B = bulbus cordis; PV = primitive ventricle; PA = primitive atrium; SV = sinus venosus. (**C**) At 30–35 days. Dextral looping is complete, and the four primitive heart chambers are apparent. aa = aortic arches; AS = aortic sac; pRA = primitive right atrium; pRV = primitive right ventricle; pLA = primitive left atrium; pLV = primitive left ventricle. (**D**) Coronal magnetic resonance imaging of a cyanotic infant with asplenia demonstrating dextrocardia and midline liver.

III. THE AORTICOPULMONARY (AP) SEPTUM (FIGURE 5.3)

A. Formation. Neural crest cells migrate from the hindbrain region through pharyngeal arches 3, 4, and 6 and invade both the **truncal ridges** and **bulbar ridges**. The truncal and bulbar ridges grow and twist around each other in a spiral fashion and eventually fuse to form the AP septum. The AP septum divides the truncus arteriosus and bulbus cordis into the aorta and pulmonary trunk.

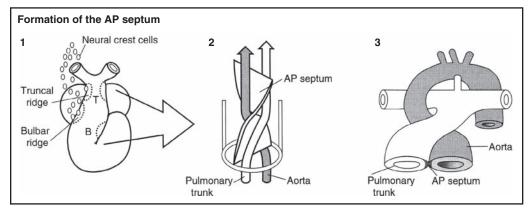
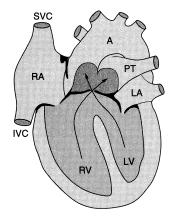
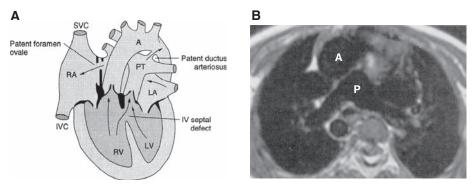
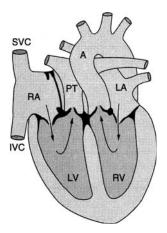



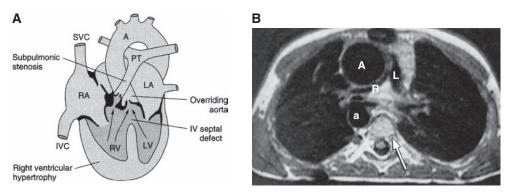
FIGURE 5.3. Formation of the aorticopulmonary (AP) septum.


B. Clinical considerations

- 1. Persistent truncus arteriosus (PTA; Figure 5.4) is caused by abnormal neural crest cell migration such that there is only *partial* development of the AP septum. PTA results in a condition in which one large vessel leaves the heart and receives blood from both the right and left ventricles. PTA is usually accompanied by a membranous ventricular septal defect (VSD) and is associated clinically with **marked cyanosis (right–left shunting of blood)**. Figure 5.4 shows persistent truncus arteriosus. *Arrows* indicate the direction of blood flow.
- 2. D-Transposition of the great arteries (complete; Figure 5.5) is caused by abnormal neural crest cell migration such that there is nonspiral development of the AP septum. D-Transposition results in a condition in which the aorta arises abnormally from the right ventricle and the pulmonary trunk arises abnormally from the left ventricle; hence the systemic and pulmonary circulations are completely separated from each other. It is incompatible with life unless an accompanying shunt exists like a VSD, patent foramen ovale, or patent ductus arteriosus. It is associated clinically with marked cyanosis (right-left shunting of blood). Figure 5.5A shows D-transposition of the great arteries (complete). Arrows indicate the direction of blood flow. In Figure 5.5B, magnetic

FIGURE 5.4. Persistent truncus arteriosus. SVC = superior vena cava; RA = right atrium; IVC = inferior vena cava; RV = right ventricle; LV = left ventricle; A = aorta; PT = pulmonary trunk; LA = left atrium.


40


FIGURE 5-5. D-Transposition of the great arteries (complete). SVC = superior vena cava; RA = right atrium; IVC = inferior vena cava; RV = right ventricle; LV = left ventricle; A = aorta; PT = pulmonary trunk; LA = left atrium; IV = interventricular; P = pulmonary artery.

resonance imaging (MRI) shows the ascending aorta (A) abnormally positioned anterior to the pulmonary artery (P). Normally, at the level of the semilunar valves, the ascending aorta is positioned posterior and to the right of the pulmonary artery.

- **3.** L-Transposition of the great vessels (corrected; Figure 5.6). In L-transposition, the aorta and pulmonary trunk are transposed and the ventricles are "inverted" such that the anatomical right ventricle lies on the left side and the anatomical left ventricle lies on the right side. These two major deviations offset one another such that blood flow pattern is normal. Figure 5.6 shows L-transposition of the great arteries (corrected).
- **4. Tetralogy of Fallot (TF; Figure 5.7)** is caused by an abnormal neural crest cell migration such that there is *skewed* development of the AP septum. TF results in a condition in which the pulmonary trunk obtains a small diameter

FIGURE 5.6. L-Transposition of the great arteries (corrected). *Arrows* indicate the direction of blood flow. SVC = superior vena cava; RA = rightatrium; IVC = inferior vena cava; RV = right ventricle; LV = left ventricle; A = aorta; PT = pulmonary trunk; LA = left atrium.

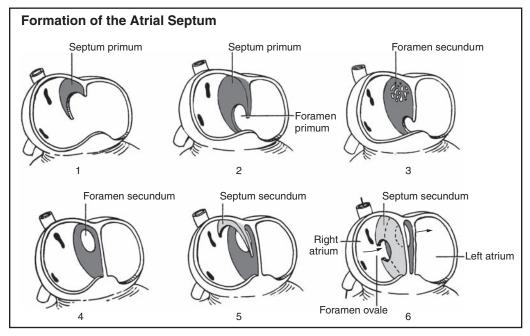
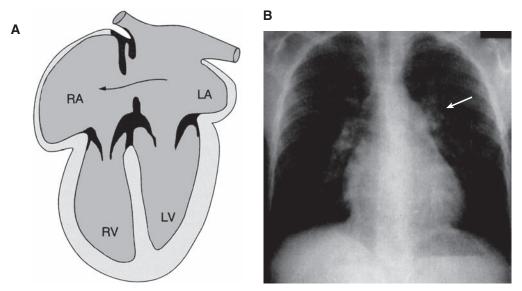
FIGURE 5.7. Tetralogy of Fallot. (A) *Arrows* indicate the direction of blood flow. SVC = superior vena cava; RA = right atrium; IVC = inferior vena cava; RV = right ventricle; LV = left ventricle; A = aorta; PT = pulmonary trunk; LA = left atrium; IV = interventricular. (B) MRI. R = right pulmonary artery; L = left pulmonary artery; A = aortic arch; a = descending aorta.

and the aorta obtains a large diameter. TF is characterized by four classic malformations: **pulmonary stenosis**, **right ventricular hypertrophy**, **overriding aorta**, and **ventricular septal defect**, giving the mnemonic **PROVE**. TF is associated clinically with **marked cyanosis** (right–left shunting of blood) whereby the clinical consequences depend primarily on the severity of the pulmonary stenosis. Figure 5.7A shows tetralogy of Fallot. The MRI (Figure 5.7B) shows the small right pulmonary artery (R) and the larger but still diminutive left pulmonary artery (L). Note also the very large diameter of the aortic arch (A). There is also a prominent bronchial artery (*arrow*) branching from the descending aorta (a).

IV. THE ATRIAL SEPTUM (FIGURE 5.8)

A. Formation

- **1.** The crescent-shaped **septum primum** forms in the roof of the primitive atrium and grows toward the atrioventricular (AV) cushions in the AV canal.
- **2.** The **foramen primum** forms between the free edge of the septum primum and the AV cushions; it is closed when the septum primum fuses with the AV cushions.
- **3**. The **foramen secundum** forms in the center of the septum primum.
- 4. The crescent-shaped **septum secundum** forms to the right of the septum primum.
- **5.** The **foramen ovale** is the opening between the upper and lower limbs of the septum secundum.
- **6.** During embryonic life, blood is shunted from the right atrium to the left atrium via the foramen ovale.
- 7. Immediately after birth, functional closure of the foramen ovale is facilitated both by a **decrease in right atrial pressure** from occlusion of placental circulation and by an **increase in left atrial pressure** due to increased pulmonary venous return.
- **8**. Later in life, the septum primum and septum secundum anatomically fuse to complete the formation of the atrial septum.

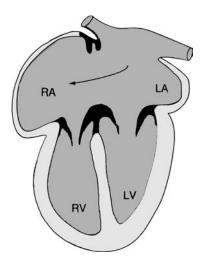

FIGURE 5.8. Formation of the atrial septum. The *arrows* in 6 indicate the direction of blood flow across the fully developed septum, from the right atrium to the left atrium.

FIGURE 5.9. Foramen secundum defect. RA = right atrium; RV = right ventricle; LA = left atrium; LV = left ventricle.*Arrow*shows the direction of blood flow.

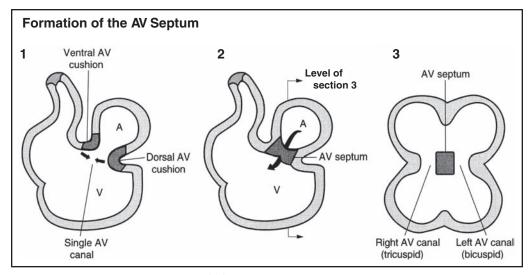
B. Clinical considerations. Atrial septal defects (ASDs)

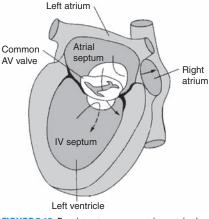
- 1. **Probe patency of the foramen ovale** is caused by incomplete anatomic fusion of septum primum and septum secundum. It is present in approximately 25% of the population and is usually of no clinical importance.
- **2. Premature closure of the foramen ovale** is closure of the foramen ovale during prenatal life. It results in hypertrophy of the right side of the heart and underdevelopment of the left side of the heart.
- 3. Foramen secundum defect (Figure 5.9) is caused by excessive resorption of septum primum, septum secundum, or both. This results in a condition in which there is an opening between the right and left atria. Some defects can be tolerated for a long time, with clinical symptoms manifesting as late as age 30 years. It is the most common clinically significant ASD. Figure 5.9A shows a foramen secundum defect. The anteroposterior radiograph in Figure 5.9B shows cardiomegaly due to enlargement of the right atrium and right ventricle (left atrium and ventricle are generally normal sized), enlargement of the pulmonary artery (arrow), and increased pulmonary vascularity. The enlarged pulmonary arteries prevent the aorta from forming the normal left border of the heart (i.e., the aortic knob is small).
- **4. Common atrium (cor triloculare biventriculare; Figure 5.10)** is caused by the complete failure of septum primum and septum secundum to develop. This results in a condition in which there is formation of only one atrium. Figure 5.10 shows a common atrium defect.

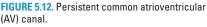
FIGURE 5.10. Common atrium. RA = right atrium; RV = right ventricle; LA = left atrium; LV = left ventricle.*Arrow*shows the direction of blood flow.

V. THE ATRIOVENTRICULAR (AV) SEPTUM (FIGURE 5.11)

A. Formation. The dorsal AV cushion and ventral AV cushion approach each other and fuse to form the AV septum. The AV septum partitions the AV canal into the right AV canal and left AV canal.




FIGURE 5.11. Formation of the atrioventricular (AV) septum. The AV septum partitions the atrioventricular canal.


B. Clinical considerations

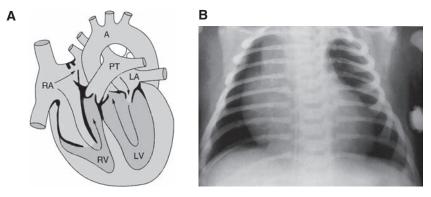

- **1. Persistent common AV canal (Figure 5.12)** is caused by failure of fusion of the dorsal and ventral AV cushions. It results in a condition in which the common AV canal is never partitioned into the right and left AV canals, so that a large hole can be found in the center of the heart. Consequently, the tricuspid and bicuspid valves are represented by one valve common to both sides of the heart. Two common hemodynamic abnormalities are found:
 - **a. Left-right shunting** of blood from the left atrium to the right atrium, causing an enlarged right atrium and right ventricle
 - **b. Mitral valve regurgitation**, causing an enlarged left atrium and left ventricle

Figure 5.12 shows a persistent common AV canal defect. *Arrows* indicate the direction of blood flow.

2. Ebstein's anomaly (Figure 5.13) is caused by the failure of the posterior and septal leaflets of the tricuspid valve to attach normally to the annulus fibrosus; instead they are displaced inferiorly into the right ventricle. It results in a condition in which the right ventricle is divided into a large, upper, "atrialized" portion

FIGURE 5.13. Ebstein's anomaly. A = aorta; RA = right atrium; RV = right ventricle; LV = left ventricle; LA = left atrium; PT = pulmonary trunk.*Arrows*indicate the direction of blood flow.

and a small, lower, functional portion. Due to the small, functional portion of the right ventricle, there is reduced amount of blood available to the pulmonary trunk. It is usually associated with an ASD and maternal lithium exposure. Figure 5.13A shows Ebstein's anomaly. The anteroposterior radiograph in Figure 5.13B shows massive cardiomegaly due to enlargement of the right atrium. The left cardiac contour is also abnormal because of displacement of the right ventricular outflow tract.

- **3. Foramen primum defect (Figure 5.14)** is caused by a failure of the AV septum to fuse with the septum primum. It results in a condition in which the foramen primum is never closed and is generally accompanied by an abnormal mitral valve. Figure 5.14 shows a foramen primum defect.
- Tricuspid atresia (hypoplastic right heart; Figure 5.15) is caused by an insufficient amount of AV cushion tissue available for the formation of

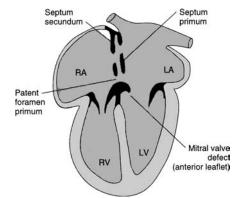
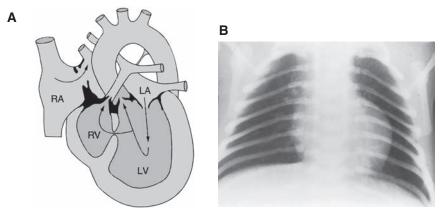



FIGURE 5.14. Foramen primum defect.


FIGURE 5.15. Tricuspid atresia. RA = right atrium; RV = right ventricle; LA = left atrium; LV = left ventricle.*Arrows*indicate the direction of blood flow.

the tricuspid valve. It results in a condition in which there is complete agenesis of the tricuspid valve, so that no communication between the right atrium and right ventricle exists. It is associated clinically with **marked cyanosis** and is always accompanied by the following: **patent foramen ovale**, **interventricular septum defect**, **overdeveloped left ventricle**, and **underdeveloped right ventricle**. Figure 5.15A shows a tricuspid atresia defect. The anteroposterior radiograph in Figure 5.15B shows a normal-sized heart with a convex left cardiac contour.

VI. THE INTERVENTRICULAR (IV) SEPTUM (FIGURE 5.16)

A. Formation

- **1.** The **muscular IV septum** develops in the midline on the floor of the primitive ventricle and grows toward the fused AV cushions.
- **2.** The **IV foramen** is located between the free edge of the muscular IV septum and the fused AV cushions.
- **3**. The IV foramen is closed by the **membranous IV septum**.
- **4.** The membranous IV septum forms by the proliferation and fusion of tissue from three sources: the **right bulbar ridge**, **left bulbar ridge**, and **AV cushions**.

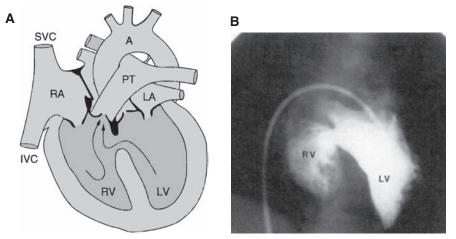


FIGURE 5.16. Formation of the interventricular (IV) septum. The IV septum partitions the primitive ventricle. Shaded portion in 2 indicates the three sources of the membranous interventricular septum: a = right bulbar ridge; b = left bulbar ridge; c = atrioventricular (AV) cushions.

B. Clinical considerations. IV septal defects (VSDs)

- **1. Muscular VSD** is caused by single or multiple perforations in the muscular IV septum.
- **2. Common ventricle (cor triloculare biatriatum)** is caused by failure of the membranous and muscular IV septa to form.
- 3. Membranous VSD (Figure 5.17) is caused by faulty fusion of the right bulbar ridge, left bulbar ridge, and AV cushions. It results in a condition in which an opening between the right and left ventricles allows free flow of blood. A large VSD is initially associated with a left-right shunting of blood, increased pulmonary blood flow, and pulmonary hypertension. One of the secondary effects of a large VSD and its associated pulmonary hypertension is proliferation of the tunica intima and tunica media of pulmonary muscular arteries and arterioles, resulting in a narrowing of their lumen. Ultimately, pulmonary

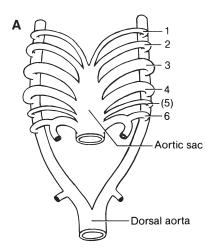
46

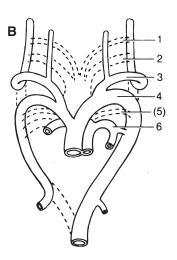
FIGURE 5.17. Membranous ventricular septal defect (VSD). SVC = superior vena cava; IVC = inferior vena cava; RA = right atrium; RV = right ventricle; LA = left atrium; LV = left ventricle; PT = pulmonary trunk; A = aorta. *Arrows* indicate the direction of blood flow.

resistance may become higher than systemic resistance and cause **right–left shunting of blood** and cyanosis. At this stage, the characteristic of the patient has been termed the **"Eisenmenger complex."** This is an important concept that distinguishes a **"blue baby"** (cyanotic at birth) and a **"blue kid"** (late-onset cyanosis). A membranous VSD is the most common type of VSD. Figure 5.17A shows a membranous VSD. The left ventriculography (Figure 5.17B) in the left anterior oblique (LAO) position demonstrates the flow of contrast material from the left ventricle (LV) through the membranous VSD defect into the right ventricle (RV).

VII. THE CONDUCTION SYSTEM OF THE HEART

- **A**. At week 5, cardiac myocytes in the sinus venosus region of the primitive heart tube begin to undergo spontaneous electrical depolarizations at a *faster rate* than cardiac myocytes in other regions.
- **B.** As dextral looping occurs, the sinus venous becomes incorporated into the right atrium, and these fast-rate depolarizing cardiac myocytes become the **sinoatrial (SA) node** and the **atrioventricular (AV) node**.
- **C.** In the adult, the cardiac myocytes of the SA and AV nodes remain committed to a fast rate of electrical depolarizations instead of developing contractile properties.
- **D**. As the atria and ventricles become electrically isolated by the formation of the **fibrous skele-ton** of the heart, the **AV node** provides the *only* pathway for depolarizations to flow from the atria to ventricles.
- E. The **AV bundle** or **bundle of His** develops from a ringlike cluster of cells found at the AV junction that specifically expresses the homeobox gene, *msx-2*.
- **F.** The **intramural network of Purkinje myocytes** have a distinct embryological origin (versus the bundle of His), in that Purkinje myocytes develop from already contractile cardiac myocytes within the myocardium and can therefore be considered as **modified cardiac myocytes**.


VIII. CORONARY ARTERIES


- **A**. Progenitor stem cells from the liver migrate into the primitive heart tube and take residence beneath the epicardium.
- **B.** These progenitor stem cells form vascular channels that grow toward the truncus arteriosus (future aorta) and form a **peritruncal capillary ring.** Only two of these capillaries survive, and these become the proximal portions of the right and left coronary arteries.

IX. DEVELOPMENT OF THE ARTERIAL SYSTEM (FIGURE 5.18)

A. General pattern

- **1.** In the head and neck region, the arterial pattern develops mainly from six pairs of arteries (called **aortic arches**) that course through the pharyngeal arches.
- **2.** The aortic arch arteries undergo a complex remodeling process that results in the adult arterial pattern.
- **3.** In the rest of the body, the arterial patterns develop mainly from the **right and left dorsal aortae.**
- **4**. The right and left dorsal aortae fuse to form the **dorsal aorta**, which then sprouts **posterolateral arteries**, **lateral arteries**, and **ventral arteries** (vitelline and umbilical).
- **B.** Clinical considerations. Most anomalies of the great arteries occur as a result of the persistence of parts of the aortic arch system that normally regress and the regression of parts that normally persist.
 - 1. Abnormal origin of the right subclavian artery occurs when right aortic arch 4 and the right dorsal aorta cranial to the seventh intersegmental artery abnormally regress. As development continues, the right subclavian artery comes to lie on the left side just inferior to the left subclavian artery. The artery must cross the midline posterior to the trachea and esophagus to supply the right arm. This anomaly may constrict the trachea or esophagus. However, it is generally not clinically significant.
 - **2. Double aortic arch** occurs when an abnormal right aortic arch develops in addition to a left aortic arch due to persistence of the distal portion of the right dorsal aorta. This forms a vascular ring around the trachea and esophagus, which causes difficulties in breathing and swallowing.
 - **3. Right aortic arch** occurs when the entire right dorsal aorta abnormally persists and part of the left dorsal aorta regresses. The right aortic arch may pass anterior or posterior (retroesophageal right arch) to the esophagus and trachea. A retroesophageal right arch may cause difficulties in swallowing or breathing.
 - 4. Patent ductus arteriosus occurs when the ductus arteriosus, a connection between the left pulmonary artery and aorta, fails to close. Normally the ductus arteriosus functionally closes within a few hours after birth via smooth muscle contraction to ultimately form the ligamentum arteriosum. A patent ductus arteriosus causes a left → right shunting of oxygen-rich blood from the aorta back into the pulmonary circulation. This can be treated with prostaglandin synthesis inhibitors (such as indomethacin), which promote closure. It is very common in premature infants and maternal rubella infection. Clinical signs include a harsh, machine-like, continuous murmur in the upper left parasternal area.
 - **5. Postductal coarctation** of the aorta occurs when the aorta is abnormally constricted. A postductal coarctation is found distal to the origin of the left subclavian artery and inferior to the ductus arteriosus. It is clinically associated with increased blood pressure in the upper extremities, lack of pulse in femoral artery, high risk of both cerebral hemorrhage and bacterial endocarditis, and Turner syndrome. Less commonly, a **preductal coarctation** may occur, in which the constriction is located superior to the ductus arteriosus.

С

Embryonic	Adult
Aortic arch arteries	
1	Maxillary artery (portion of)
2	Stapedial artery (portion of)
3	Right and left common carotid arteries (portion of) Right and left internal carotid arteries
4	Right subclavian artery (portion of) Arch of the aorta (portion of)
5	Regresses in humans
6 ^{<i>a</i>}	Right and left pulmonary arteries (portion of) Ductus arteriosus
Dorsal Aorta	
Posterolateral arteries	Arteries to the upper and lower extremities, intercostal, lumbar, and lateral sacral arteries
Lateral arteries	Renal, suprarenal, and gonadal arteries
Ventral arteries	
Vitelline	Celiac, superior mesenteric, and inferior mesenteric arteries
Umbilical	Medial umbilical ligaments

^aEarly in development, the recurrent laryngeal nerves hook around aortic arch 6. On the right side, the distal part of aortic arch 6 regresses, and the right recurrent laryngeal nerve moves up to hook around the right subclavian artery. On the left side, aortic arch 6 persists as the ductus arteriosus (or ligamentum arteriosus in the adult); the left recurrent laryngeal nerve remains hooked around the ductus arteriosus.

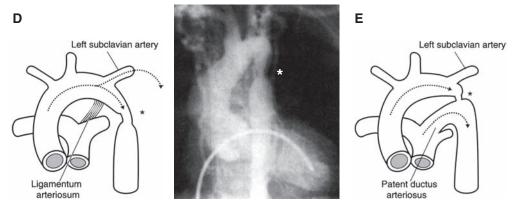
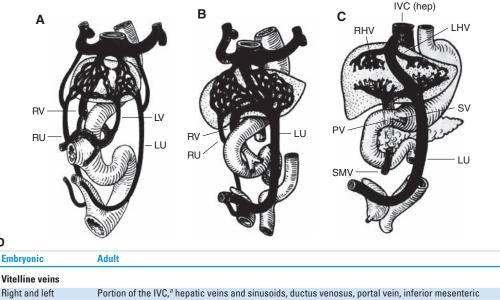



FIGURE 5.18. Development of the arterial system. (A, B) Development and fate of the aortic arches during the remodeling process. Note the portions of the aortic arches that degenerate during the remodeling process (dashed lines). (C) Table showing the correspondence of embryonic arteries to their derivative adult counterparts. (D) Postductal coarctation. Blood reaches the lower part of the body via collateral circulation through the left subclavian, intercostal, and internal thoracic arteries. An angiogram of a postductal coarctation is shown. Note the well-developed collateral blood vessels. (E) Preductal coarctation. Blood reaches the lower part of the body right of the body through a patent ductus arteriosus. The asterisk indicates a point of constriction. *Dotted arrows* indicate the direction of blood flow. Prostaglandin treatment is required to maintain the patent ductus arteriosus until surgery.

X. DEVELOPMENT OF THE VENOUS SYSTEM (FIGURE 5.19)

- A. General pattern. The general pattern develops mainly from three pairs of veins: the vitelline veins, umbilical veins, and cardinal veins that empty blood into the sinus venosus. These veins undergo remodeling due to a left → right shunting of venous blood to the right atrium.
- **B.** Clinical considerations. Most anomalies of the venous system occur as a result of persistence of the veins on the left side of the body that normally regress during the left \rightarrow right shunting of blood.
 - **1. Double inferior vena cava** occurs when the left supracardinal vein persists, thereby forming an additional inferior vena cava below the level of the kidneys.
 - **2.** Left superior vena cava occurs when the left anterior cardinal vein persists, forming a superior vena cava on the left side. The right anterior cardinal vein abnormally regresses.
 - **3. Double superior vena cava** occurs when the left anterior cardinal vein persists, forming a superior vena cava on the left side. The right anterior cardinal vein also forms a superior vena cava on the right side.
 - 4. Absence of the hepatic portion of the inferior vena cava occurs when the right vitelline vein fails to form a segment of the inferior vena cava. Consequently, blood from the lower part of the body reaches the right atrium via the azygos vein, hemiazygos vein, and superior vena cava.

Right and left	Portion of the IVC, a hepatic veins and sinusoids, ductus venosus, portal vein, inferior mesenteric
	vein, superior mesenteric vein, splenic vein
Umbilical veins	
Right	Hepatic sinusoids, degenerates early in fetal life
Left	Hepatic sinusoids, ligamentum teres
Cardinal veins	
Anterior	SVC, internal jugular veins
Posterior	Portion of IVC, common iliac veins
Subcardinal	Portion of IVC, renal veins, gonadal veins
Supracardinal	Portion of IVC, intercostal veins, hemiazygos vein, azygos vein

IVC = inferior vena cava, SVC = superior vena cava.

D

^aNote that the IVC is derived embryologically from four different sources.

FIGURE 5.19. Development of the venous system. (A) Week 5. (B) Month 2. (C) Month 3. Both the vitelline and umbilical veins contribute to the hepatic sinusoidal network within the liver. Due to the left-right shunting of venous blood, the right vitelline vein enlarges, whereas the proximal part of the left vitelline vein disappears. Note that the right umbilical vein degenerates early in fetal life, whereas the left umbilical veins enlarges to carry oxygenated blood from the placenta to the fetus. (D) Table showing the correspondence of the embryonic veins to their adult counterparts. IVC (hep) = inferior vena cave, LHV = left hepatic vein, LU = left umbilical vein, SMV = superior mesenteric vein, SV = splenic vein.

Study Questions for Chapter 5

1. The most common interventricular septal defect (VSD) seen clinically is

- (A) persistent truncus arteriosus
- (B) membranous VSD
- (C) common ventricle
- **(D)** foramen secundum defect
- (E) premature closure of foramen ovale

2. Which of the following clinical signs would be most obvious on examination of a patient with either tetralogy of Fallot or transposition of the great vessels?

- (A) Sweaty palms
- (B) Lack of femoral artery pulse
- (C) Pulmonary hypertension
- (D) Cyanosis
- (E) Diffuse red rash

3. Which of the following congenital cardiovascular malformations is most commonly associated with maternal rubella infection?

- (A) Isolated dextrocardia
- (B) Patent ductus arteriosus
- (C) Persistent truncus arteriosus
- (D) Coarctation of the aorta
- (E) Double aortic arch

4. The most common atrial septal defect (ASD) seen clinically is

- (A) common atrium
- (B) foramen secundum defect
- (C) premature closure of the foramen ovale
- (D) persistent truncus arteriosus
- (E) probe patency of the foramen ovale

5. The ventral surface of the adult heart as seen on gross examination or radiography is comprised primarily of the

- (A) left atrium
- (B) left ventricle
- (C) inferior vena cava
- (D) bulbus cordis
- **(E)** right ventricle

6. The left recurrent laryngeal nerve recurs around the

- (A) left primary bronchus
- (B) left subclavian artery
- (C) left subclavian vein
- **(D)** ductus arteriosus
- (E) left common carotid artery

7. Which of the three primary germ layers forms the histologically definitive endocardium of the adult heart?

- (A) Ectoderm
- (B) Endoderm
- (C) Mesoderm
- (D) Epiblast
- (E) Hypoblast

8. Which of the following is responsible for the proper alignment of the atrioventricular canal and the conoventricular canal?

- (A) Lateral folding of the embryo
- (B) Craniocaudal folding of the embryo
- (C) Programmed cell migration
- **(D)** Formation of the aorticopulmonary septum
- (E) Dextral looping

9. The hepatic sinusoids that can be observed histologically in an adult liver are derived from the

- (A) supracardinal veins
- (B) anterior cardinal veins
- (C) posterior cardinal veins
- (D) vitelline veins
- (E) subcardinal veins

10. Which of the following arterial malformations is very common in premature infants?

- (A) Patent ductus arteriosus
- (B) Coarctation of the aorta
- (C) Right aortic arch
- (D) Double aortic arch
- (E) Abnormal origin of the right subclavian artery

11. A physician monitoring a newborn infant's heart sounds using a stethoscope hears the characteristic murmur of a patent ductus arteriosus. How soon after birth should this murmur normally disappear?

- (A) 1–2 months
- (B) 1-2 weeks
- (C) 1-2 days
- (D) 1-2 hours
- (E) Immediately

12. How soon after birth does the foramen ovale close?

- (A) 1–2 months
- (B) 1-2 weeks
- (C) 1–2 days
- (D) 1-2 hours
- (E) Immediately

13. A 9-year-old boy presents with

complaints of numbness and tingling in both feet. Examination reveals no pulse in the femoral artery, increased blood pressure in the arteries of the upper extremity, and enlarged intercostal veins. Which of the following abnormalities would be suspected?

- (A) Double aortic arch
- (B) Tetralogy of Fallot
- (C) Postductal coarctation of the aorta
- (D) Right aortic arch
- (E) Abnormal origin of the right subclavian artery

14. The coronary sinus is derived from which of the following?

- (A) Truncus arteriosus
- (B) Bulbus cordis
- (C) Primitive ventricle
- (**D**) Primitive atrium
- (E) Sinus venosus

15. The conus arteriosus is derived from which of the following?

- (A) Truncus arteriosus
- (B) Bulbus cordis
- (C) Primitive ventricle
- **(D)** Primitive atrium
- (E) Sinus venosus

16. The proximal part of the aorta is derived from which of the following?

- (A) Truncus arteriosus
- (B) Bulbus cordis
- **(C)** Primitive ventricle
- **(D)** Primitive atrium
- (E) Sinus venosus

Chapter 5 Cardiovascular System

- 17. The trabeculated part of the right ventri-
- cle is derived from which of the following?
- (A) Truncus arteriosus
- (B) Bulbus cordis
- (C) Primitive ventricle
- **(D)** Primitive atrium
- (E) Sinus venosus

18. Tricuspid atresia is a cardiac malformation that involves which of the following septa?

- (A) Aorticopulmonary septum
- (B) Atrial septum
- (C) Atrioventricular septum
- (D) Interventricular septum

19. A muscular VSD is a cardiac malformation that involves which of the following septa?

- (A) Aorticopulmonary septum
- (B) Atrial septum
- (C) Atrioventricular septum
- (D) Interventricular septum

20. Tetralogy of Fallot is a cardiac malformation that involves which of the following septa?

- (A) Aorticopulmonary septum
- (B) Atrial septum
- (C) Atrioventricular septum
- (D) Interventricular septum

21. D-Transposition of the great arteries is a cardiac malformation that involves which of the following septa?

- (A) Aorticopulmonary septum
- (B) Atrial septum
- (C) Atrioventricular septum
- (D) Interventricular septum

22. An insufficient amount of AV cushion material will result in which of the following?

- (A) Persistent truncus arteriosus (PTA)
- (B) Ebstein's anomaly
- (C) Transposition of the great arteries
- (D) Common ventricle
- (E) Tricuspid atresia

23. A partial development of the aorticopulmonary septum will result in which of the following?

- (A) Persistent truncus arteriosus (PTA)
- (B) Ebstein's anomaly
- (C) Transposition of the great arteries
- (D) Common ventricle
- (E) Tricuspid atresia

24. A failure of the tricuspid leaflets to attach to the annulus fibrosus will result in which of the following?

- (A) Persistent truncus arteriosus (PTA)
- (B) Ebstein's anomaly
- (C) Transposition of the great arteries
- (D) Common ventricle
- (E) Tricuspid atresia

25. A faulty fusion of the right and left bulbar ridges and AV cushion will result in which of the following?

- (A) Persistent truncus arteriosus (PTA)
- (B) Ebstein's anomaly
- (C) Transposition of the great arteries
- (D) Common ventricle
- (E) Membranous VSD

26. The superior mesenteric artery is derived from which of the following?

(A) Posterolateral arteries

- (B) Lateral arteries
- (C) Ventral arteries

27. The arteries to the upper extremity are derived from which of the following?

- (A) Posterolateral arteries
- (B) Lateral arteries
- (C) Ventral arteries

28. The gonadal arteries are derived from which of the following?

- (A) Posterolateral arteries
- (B) Lateral arteries
- (C) Ventral arteries

29. The proximal part of the internal carotid artery is derived from which of the following?

- (A) Aortic arch 1
- (B) Aortic arch 2
- (C) Aortic arch 3
- (D) Aortic arch 4
- (E) Aortic arch 6

30. A portion of the arch of the aorta is derived from which of the following?

- (A) Aortic arch 1
- (B) Aortic arch 2
- (C) Aortic arch 3
- (D) Aortic arch 4
- (E) Aortic arch 6

31. The proximal part of the right subclavian artery is derived from which of the following?

- (A) Aortic arch 1
- (B) Aortic arch 2
- (C) Aortic arch 3
- (D) Aortic arch 4
- (E) Aortic arch 6

32. The portal vein is derived from which of the following?

- (A) Vitelline veins
- (B) Umbilical veins
- (C) Anterior cardinal veins
- (D) Posterior cardinal veins
- (E) Subcardinal veins

33. The renal veins are derived from which of the following?

- (A) Vitelline veins
- (B) Umbilical veins
- (C) Anterior cardinal veins
- **(D)** Posterior cardinal veins
- (E) Subcardinal veins

34. The superior mesenteric vein is derived from which of the following?

- (A) Vitelline veins
- (B) Umbilical veins
- (C) Anterior cardinal veins
- (D) Posterior cardinal veins
- (E) Subcardinal veins

35. Closure of the foramen primum results from fusion of which of the following structures?

- (A) Septum secundum and the fused atrioventricular cushions
- (B) Septum secundum and the septum primum
- **(C)** Septum primum and the fused atrioventricular cushions
- (D) Septum primum and the septum spurium
- (E) Septum primum and the sinoatrial valves

36. A 3-day-old boy delivered at 32 weeks of gestation is experiencing respiratory distress syndrome. The physician detects a heart murmur characteristic of a patent ductus arteriosus, a diagnosis that is confirmed with an echocardiogram. Which embryonic structure is involved in this diagnosis?

- (A) Left third aortic arch
- (B) Right third aortic arch
- (C) Left sixth aortic arch
- (D) Umbilical arteries
- (E) Vitelline arteries

Answers and Explanations

- **1. B.** The most common of all cardiac congenital malformations seen clinically are membranous VSDs. The membranous interventricular septum forms by the proliferation and fusion of tissue from three different sources: the right and left bulbar ridges and the atrioventricular (AV) cushions. Because of this complex formation, the probability of defects is very high.
- **2. D.** Marked cyanosis is a distinct clinical sign in both tetralogy of Fallot and transposition of the great vessels. Any congenital cardiac malformation that allows right-to-left shunting of blood is sometimes called cyanotic heart disease. Right-to-left shunting allows poorly oxygenated blood from the right side of the heart to mix with highly oxygenated blood on the left side of the heart. This causes decreased oxygen tension to peripheral tissues, leading to a characteristic blue tinge (cyanosis) and bulbous thickening of the fingers and toes (clubbing).
- **3. B.** Patent ductus arteriosus (PDA) is the most common congenital cardiac malformation associated with rubella infection of the mother. It is unclear how the rubella virus acts to cause PDA.
- **4. B.** The most common ASD is foramen secundum defect, which is caused by excessive resorption of the septum primum or the septum secundum. This results in an opening between the atria (patent foramen ovale). Some of these defects may remain undiagnosed and may be tolerated for a long time (up to age 30 years before the person presents clinically).
- **5. E.** During embryological formation of the heart, the arterial and venous ends of the heart tube are fixed in place. As further growth continues, the heart tube folds to the right. This greatly contributes to the ventral surface of the adult heart being comprised primarily of the right ventricle. The definitive anatomical orientation of the adult heart within the thorax is not at all similar to the strong image we have in our minds of the classic Valentine's Day heart.
- **6. D.** The left recurrent laryngeal nerve recurs around the ductus arteriosus (ligamentum arteriosus in the adult). Early in embryological development, both the right and left recurrent laryngeal nerves hook (recur) around aortic arch 6. The left aortic arch 6 persists as the ductus arteriosus.
- 7. C. The entire cardiovascular system is of mesodermal origin.
- **8. E.** Dextral looping aligns these two canals through early looping, convergence, wedging, and repositioning. This is especially important in correcting the unusual blood flow pattern in the primitive heart tube where venous blood flows into the left ventricle prior to the right ventricle.
- **9. D.** Because of the location of the vitelline veins and the tremendous growth of the developing liver (hepatic diverticulum), the vitelline veins are surrounded by the liver and give rise to the hepatic sinusoids. The umbilical veins also contribute to the hepatic sinusoidal network.
- **10. A.** Patent ductus arteriosus is very common in premature infants. Infants with birth weight less than 1750 grams typically have a PDA during the first 24 hours postnatally. PDA is more common in female infants than in male infants.
- **11. D**. The ductus arteriosus functionally closes within 1–2 hours after birth via smooth muscle contraction of the tunica media. Before birth, the patency of the ductus arteriosus is controlled by the low oxygen content of the blood flowing through it, which in turn stimulates production of prostaglandins, which cause smooth muscle to relax. After birth, the high oxygen content of the blood due to lung ventilation inhibits production of prostaglandins, causing smooth muscle contraction. Premature infants can be treated

54 BRS Embryology

with prostaglandin synthesis inhibitors (such as indomethacin) to promote closure of the ductus arteriosus.

- **12. E.** The foramen ovale functionally closes almost immediately after birth as pressure in the right atrium decreases and pressure in the left atrium increases, thereby pushing the septum primum against the septum secundum. Anatomical fusion occurs much later in life; more than 25% of the population has probe patency of the foramen ovale, in which anatomical fusion does not occur.
- **13. C.** No pulse in the femoral artery, increased blood pressure in the arteries of the upper extremity, enlarged intercostal veins, and numbness and tingling in both feet are clinical symptoms indicative of postductal coarctation of the aorta. Because of the constriction of the aorta, the blood supply to the lower extremity is compromised.
- 14. E. The coronary sinus is derived from the sinus venosus.
- **15. B.** The smooth part of the right ventricle, known as the conus arteriosus, is derived from the bulbus cordis.
- **16. A**. The proximal part of the aorta is derived from the truncus arteriosus.
- **17. C.** The trabeculated part of the right ventricle is derived from the primitive ventricle.
- **18. C.** Tricuspid atresia involves the atrioventricular septum.
- **19. D.** Muscular VSD is caused by perforations in the muscular interventricular septum.
- **20. A.** Tetralogy of Fallot involves the aorticopulmonary septum.
- **21. A.** D-Transposition involves the aorticopulmonary septum.
- **22. E.** Insufficient amount of AV cushion material will cause tricuspid atresia.
- **23. A.** Partial development of the aorticopulmonary septum will cause persistent truncus arteriosus.
- **24. B.** Failure of fusion of the tricuspid leaflets with the annulus fibrosus results in Ebstein's anomaly.
- **25. E.** Faulty fusion of the right and left bulbar ridges and AV cushions will cause membranous VSD.
- **26. C.** The superior mesenteric artery is derived from ventral branches of the dorsal aorta, specifically the vitelline arteries.
- **27. A.** Arteries to the upper extremity are derived from posterolateral branches of the dorsal aorta.
- **28. B.** The gonadal arteries are derived from lateral branches of the dorsal aorta.
- **29. C.** The proximal part of the internal carotid artery is derived from aortic arch 3.
- **30. D.** Part of the arch of the aorta is derived from aortic arch 4.
- **31. D.** The proximal part of the right subclavian artery is derived from aortic arch 4.
- **32. A.** The portal vein is derived from the right vitelline vein.
- **33. E.** The renal veins are derived from the subcardinal veins.
- **34. A.** The superior mesenteric vein is derived from the vitelline veins.
- **35. C.** The foramen primum forms between the free edge of the septum primum and the atrioventricular (AV) cushions. It is closed when the septum primum fuses with the AV cushions.
- **36. C.** Patent ductus arteriosus (PDA) is a condition in which the ductus arteriosus, a blood vessel that allows blood to bypass the baby's lungs before birth, fails to normally close after birth. The ductus arteriosus is derived from the distal portion of the left sixth aortic arch.

chapter

6

Placenta and Amniotic Fluid

I. FORMATION OF THE PLACENTA (FIGURE 6.1)

The placenta is formed as the endometrium of the uterus is invaded by the developing embryo and as the trophoblast forms the villous chorion. Villous chorion formation goes through three stages: **primary chorionic villi**, **secondary chorionic villi**, and **tertiary chorionic villi**.

II. PLACENTAL COMPONENTS: DECIDUA BASALIS AND VILLOUS CHORION (FIGURE 6.2)

The human placenta is **hemochorial** (i.e., maternal blood comes in direct contact with the chorion) and **discoid-shaped**.

A. The maternal component

- **1.** The maternal component of the placenta consists of the **decidua basalis**, which is derived from the endometrium of the uterus located between the blastocyst and the myometrium.
- **2.** The decidua basalis and **decidua parietalis** (which includes all portions of the endometrium other than the site of implantation) are shed as part of the afterbirth.
- **3.** The **decidua capsularis**—the portion of endometrium that covers the blastocyst and separates it from the uterine cavity—becomes attenuated and degenerates at week 22 of development because of a reduced blood supply.
- 4. The term decidua means "falling off," "shed," or "sloughed off."
- **5.** The **maternal surface** of the placenta is characterized by 8–10 compartments called **cotyledons** (imparting a **cobblestone appearance**), which are separated by decidual (placental) septa.
- 6. The maternal surface is dark red in color and oozes blood due to torn maternal blood vessels.

B. The fetal component

- **1.** The fetal component of the placenta consists of **tertiary chorionic villi** derived from both the trophoblast and extraembryonic mesoderm, which collectively become known as the **villous chorion**.
- **2.** The villous chorion develops most prolifically at the site of the decidua basalis.
- **3.** The villous chorion is in contrast to an area of no villous development known as the **smooth chorion** (which is related to the decidua capsularis).
- **4**. The **fetal surface** of the placenta is characterized by the well-vascularized chorionic plate containing the chorionic (fetal) blood vessels.
- **5.** The fetal surface has a **smooth**, **shiny**, **light-blue or blue-pink appearance** (because the amnion covers the fetal surface), and five to eight large chorionic (fetal) blood vessels should be apparent.

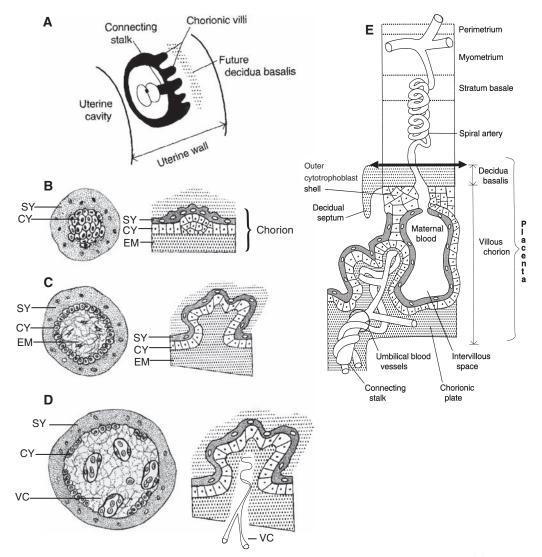
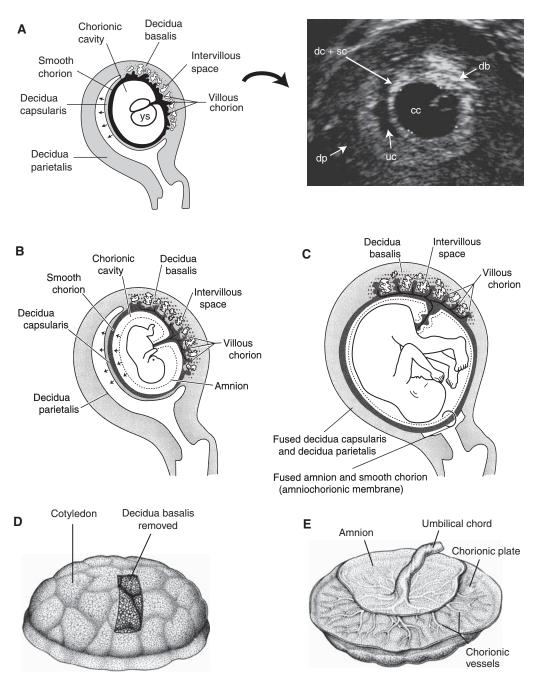



FIGURE 6.1. Diagram of the various stages of villous chorion formation as it relates to placental development. (A) A week 2 embryo completely embedded in the wall of the uterus. (B) Primary chorionic villus during week 2. A primary villus consists of a core of cytotrophoblastic cells surrounding by syncytiotrophoblast. (C) Secondary chorionic villus during the start of week 3. A secondary villus consists of a core of extraembryonic mesoderm surrounded by cytotrophoblastic cells and syncytiotrophoblast. (D) Tertiary chorionic villus at the end of week 3. A tertiary villus consists of a core of villous (fetal) capillaries surrounded by cytotrophoblastic cells and syncytiotrophoblast. (E) The villous chorion (consisting of tertiary chorionic villi) and decidua basalis are the two components of the definitive placenta. Note that the cytotrophoblast spentrates the syncytiotrophoblast to make contact with the decidua basalis and form the outer cytotrophoblast shell. The thick, *double-headed arrow* indicates the plane of separation when the placenta is shed during the afterbirth. (Note: The stratum basale is not part of the placenta.) SY = syncytiotrophoblast; CY = cytotrophoblast; EM = extraembryonic mesoderm; VC = villous capillaries.

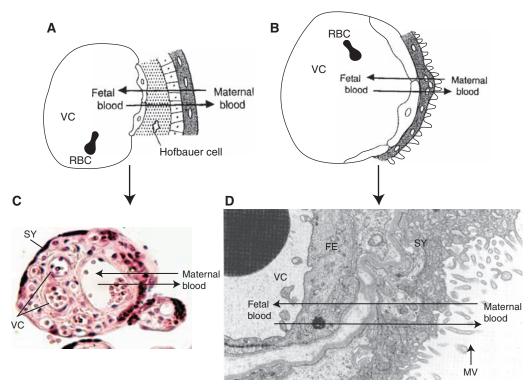


FIGURE 6.2. Diagram showing the relationship of the fetus, uterus, and placenta. (A) Week 4. Sonogram shows the decidua basalis (db), decidua parietalis (dp), and decidua capsularis and smooth chorion (dc+sc). Note the location of the uterine cavity (uc) and chorionic cavity (cc). Within the chorionic cavity, the yolk sac can be observed. (B) Early fetal period. The *small arrows* (outer set) indicate that as the fetus grows within the uterine wall, the decidua capsularis expands and fuses with the decidua parietalis, thereby obliterating the uterine cavity. The *small arrows* (inner set) indicate that as the fetus grows within the uterine wall, the decidua capsularis expands and fuses with the decidua parietalis, thereby obliterating the uterine cavity. The *small arrows* (inner set) indicate that as the fetus grows, the amnion expands toward the smooth chorion, thereby obliterating the chorionic cavity. (C) Late fetal period. The uterine cavity and chorionic cavity are obliterated. The fused amnion and smooth chorion form the amniochorionic membrane ("bag of waters"), which passes over the cervical opening. (D) Maternal surface of the placenta.

III. PLACENTAL MEMBRANE (FIGURE 6.3)

The placental membrane separates maternal blood from fetal blood. A common misperception is that the placental membrane acts as a strict "barrier." However, a wide variety of substances freely cross the placental membrane. Some substances that cross can be either beneficial or harmful. Some substances do not cross the placental membrane. The composition of the placental membrane changes during pregnancy.

- A. In early pregnancy, the placental membrane has four layers: syncytiotrophoblast, cytotro-phoblast (Langhans cells), connective tissue, and endothelium of fetal capillaries. Hofbauer cells (large, sometimes pigmented, elliptical cells found in the connective tissue), are most numerous in early pregnancy and have characteristics similar to those of macrophages.
- **B.** In late pregnancy, the placental membrane has two layers: the syncytiotrophoblast and the endothelium of fetal capillaries.

FIGURE 6.3. The placental membrane. **(A)** In early pregnancy. **(B)** In late pregnancy. Langhans cells are cytotrophoblastic cells that serve as stem cells for the syncytiotrophoblast. **(C)** Light micrograph of a tertiary chorionic villus showing the placental membrane in an early pregnancy. Note the location of maternal and fetal blood. **(D)** Electron microscopy of a tertiary chorionic villus showing the placental membrane in a late pregnancy. Note the location of maternal and fetal blood and the microvillous border (MV) of the syncytiotrophoblast cells. FE = fetal endothelium; SY = syncytiotrophoblast; RBC = red blood cell; VC = villous (fetal) capillaries. (*continued*)

SUBSTANCES THAT CROSS OR DO NOT CROSS THE PLACENTAL MEMBRANE

- BENEFICIAL SUBSTANCES THAT CROSS THE PLACENTAL MEMBRANE
- O₂, CO₂
- Glucose, L-form amino acids, free fatty acids, vitamins $\rm H_2O, Na^+, Cl^-, K^+, l^-, CA^{2+}, PO_4^{2+}$ Urea, uric acid, bilirubin

- Fetal and maternal RBCs
- Maternal serum proteins, α -fetoprotein, transferrin-Fe²⁺ complex, LDL, prolactin
- Steroid hormones (unconjugated)
- IgG, IgA
- HARMFUL SUBSTANCES THAT CROSS THE PLACENTAL MEMBRANE
- Viruses-e.g., rubella, cytomegalovirus, herpes simplex type 2, varicella zoster, Coxsackie, variola, measles, poliomyelitis Category X drugs (absolute contraindication in pregnancy)—e.g., thalidomide, aminopterin, methotrexate, busulfan (Myleran), chlorambucil (Leukeran), cyclophosphamide (Cytoxan), phenytoin (Dilantin), triazolam (Halcion), estazolam (ProSom), warfarin (Coumadin), isotretinoin (Accutane), clomiphene (Clomid), diethylstilbestrol (DES), ethisterone, norethisterone, megestrol (Megace), oral contraceptives (Ovcon, Levlen, Norinyl), nicotine, alcohol, ACE inhibitors (Capto-
- pril, enalapril) Category D drugs (definite evidence of risk to fetus)—e.g., tetracycline (Achromycin), doxycycline (Vibramycin), strepto-mycin, amikacin, tobramycin (Nebcin), phenobarbital (Donnatal), pentobarbital (Nembutal), valproic acid (Depakene), diazepam (Valium), chlordiazepoxide (Librium), alprazolam (Xanax), lorazepam (Ativan), lithium, hydrochlorothiazide (Diuril)
- Carbon monoxide
- Organic mercury, lead, polychlorinated biphenyls (PCBs), potassium iodide
- Cocaine, heroin
- Toxoplasma gondii, Treponema pallidum, Listeria monocytogenes
- Rubella virus vaccine
- Anti-Rh antibodies
- SUBSTANCES THAT DO NOT CROSS THE PLACENTAL MEMBRANE
- Maternally derived cholesterol, triglycerides, and phospholipids
- Protein hormones (e.g., insulin)
- Drugs (e.g., succinylcholine, curare, heparin, methyldopa, drugs similar to amino acids)
- IgD, IgE, IgM
- Bacteria in general

Ε

FIGURE 6.3. (Continued) (E) Table of substances that cross and that do not cross the placental membrane. Substances cross the placenta by simple diffusion, facilitated diffusion (e.g., glucose), active transport (e.g., many amino acids), receptor-mediated endocytosis (e.g., immunoglobulin G [IgG] and IgA), and pinocytosis (e.g., large proteins).

IV. THE PLACENTA AS AN ENDOCRINE ORGAN

The placenta produces both protein and steroid hormones as follows:

- A. Human chorionic gonadotropin (hCG) is a glycoprotein hormone that stimulates the production of progesterone by the corpus luteum.
- **B.** Human placental lactogen (hPL) is a protein hormone that induces lipolysis, thus elevating free fatty acid levels in the mother, and inhibits insulin secretion, thereby playing a role in gestational diabetes. hPL is considered to be the "growth hormone" of the fetus.
- C. Estrone, estradiol (most potent), and estriol are steroid hormones produced by the placenta, but little is known about their specific functions in either the mother or the fetus.
- **D.** Progesterone is a steroid hormone that maintains the endometrium during pregnancy, is used by the fetal adrenal cortex as a precursor for glucocorticoid and mineralocorticoid synthesis, and is used by the fetal testes as a precursor for testosterone synthesis.

V. THE UMBILICAL CORD (FIGURE 6.4)

- **A.** A patent opening called the **primitive umbilical ring** exists on the ventral surface of the developing embryo through which three structures pass: the **yolk sac** (**vitelline duct**), **connecting stalk**, and **allantois**.
- **B.** The allantois is not functional in humans and degenerates to form the **median umbilical liga**-**ment** in the adult.
- **C.** As the amnion expands, it pushes the vitelline duct, connecting stalk, and allantois together to form the **primitive umbilical cord**.
- **D.** At week 6, the gut tube connected to the yolk sac will herniate (**physiological umbilical herniation**) into the extraembryonic coelom; the herniation will be reduced by week 11. The gut tube eventually returns to the abdominal cavity, whereas the yolk sac (vitelline duct) and allantois degenerate.
- E. The definitive umbilical cord at term is pearlwhite, 1–2 cm in diameter, 50–60 cm long, and eccentrically positioned and contains the right and left umbilical arteries, left umbilical vein, and mucus connective tissue Wharton's jelly.
- F. Physical inspection of the umbilicus in a newborn may reveal a light gray, shiny sac, indicating an **omphalocele**; fecal (meconium) discharge, indicating an **ileal (Meckel's) diverticulum**; or a urine discharge, indicating a **urachal fistula**.

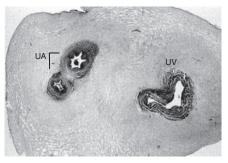


FIGURE 6.4. Light micrograph of a normal umbilical cord showing the two umbilical arteries (UA) and one umbilical vein (UV).

VI. CIRCULATORY SYSTEM OF THE FETUS (FIGURE 6.5)

Fetal circulation involves three shunts: the **ductus venosus**, the **ductus arteriosus**, and the **fora-men ovale**.

- **A**. Highly oxygenated and nutrient-enriched blood returns to the fetus from the placenta via the **left umbilical vein**. (Note: Highly oxygenated blood is carried by the left umbilical vein, not by an artery as in the adult.)
- **B.** Some blood percolates through the hepatic sinusoids; most of the blood bypasses the sinusoids by passing through the **ductus venosus** and enters the inferior vena cava (IVC).
- **C.** From the IVC, blood enters the right atrium, where most of the blood bypasses the right ventricle through the **foramen ovale** to enter the left atrium.
- **D**. From the left atrium, blood enters the left ventricle and is delivered to fetal tissues via the aorta.
- E. Poorly oxygenated and nutrient-poor fetal blood is sent back to the placenta via **right and left umbilical arteries**.

Chapter 6 Placenta and Amniotic Fluid

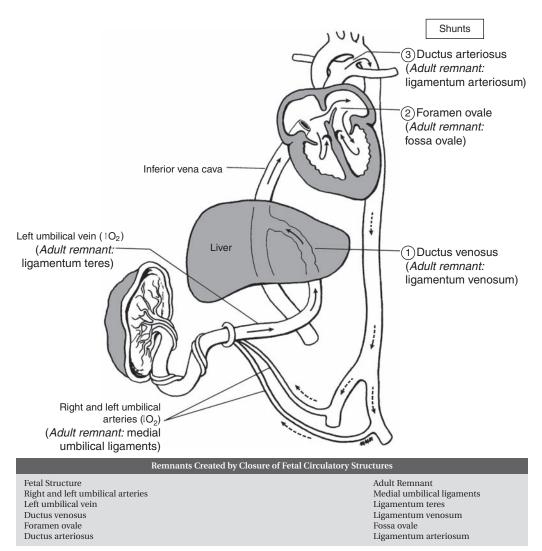


FIGURE 6.5. Schematic diagram of fetal circulation and remnants of fetal circulatory structures.

- **F.** Some blood in the right atrium enters the right ventricle; blood in the right ventricle enters the pulmonary trunk, but most of the blood bypasses the lungs through the **ductus arteriosus**.
- **G**. Fetal lungs receive only a minimal amount of blood for growth and development; the blood is returned to the left ventricle via pulmonary veins.
- **H.** Fetal lungs are not capable of performing their adult respiratory function because they are functionally immature and the fetus is underwater (amniotic fluid). The placenta provides respiratory function.
- Circulatory system changes at birth are facilitated by a decrease in right atrial pressure from occlusion of placental circulation and by an increase in left atrial pressure due to increased pulmonary venous return.
- J. Changes include closure of the right and left umbilical arteries, left umbilical vein, ductus venosus, ductus arteriosus, and foramen ovale.

VII. AMNIOTIC FLUID

Amniotic fluid is maternally derived water that contains electrolytes, carbohydrates, amino acids, lipids, proteins (hormones, enzymes, α -fetoprotein), urea, creatinine, lactate, pyruvate, desquamated fetal cells, fetal urine, fetal feces (meconium), and fetal lung liquid (useful for lecithin/sphingomyelin [L/S] ratio measurement for lung maturity).

A. Production of amniotic fluid

- 1. Amniotic fluid is constantly produced during pregnancy by the following: **direct transfer** from maternal circulation in response to osmotic and hydrostatic forces and **excretion of fetal urine by the kidneys** into the amniotic sac.
- **2.** Kidney defects (e.g., bilateral kidney agenesis or Potter syndrome) result in **oligohydramnios**.

B. Resorption of amniotic fluid

- **1.** Amniotic fluid is constantly resorbed during pregnancy by the following sequence of events: the fetus swallows amniotic fluid, amniotic fluid is absorbed into fetal blood through the gastrointestinal tract, and excess amniotic fluid is removed via the placenta and passed into maternal blood.
- **2.** Swallowing defects (e.g., esophageal atresia) or absorption defects (e.g., duodenal atresia) results in **polyhydramnios**.

C. The amount of amniotic fluid

- The amount of amniotic fluid is gradually increased during pregnancy from 50 mL at week 12 to 1000 mL at term.
- **2.** The rate of water exchange within the amniotic sac at term is 400–500 mL/hr, with a net flow of 125–200 mL/hr moving from the amniotic fluid into the maternal blood.
- **3.** The near-term fetus excretes about 500 mL of urine daily, which is mostly water because the placenta exchanges metabolic wastes.
- 4. The fetus swallows about 400 mL of amniotic fluid daily.
- **D.** Estimation of amniotic fluid volume (AFV). AFV is clinically measured by ultrasonography by calculating the amniotic fluid index (AFI). The AFI is calculated by dividing the uterus into four quadrants, using the linea nigra (pigmented linea alba) for the right and left divisions and the umbilicus for the upper and lower quadrants. The maximum vertical amniotic fluid pocket diameter in each quadrant not containing the umbilical cord or fetal extremities is measured in centimeters. The sum of these measurements is the AFI.
 - 1. AFI 0 to <5 cm indicates oligohydramnios
 - 2. AFI 5-25 cm indicates normal
 - 3. AFI >25 cm indicates polyhydramnios

VIII. TWINNING (FIGURE 6.6)

- A. Dizygotic (fraternal) twins result from the fertilization of two different secondary oocytes by two different sperm. The resulting two zygotes form two blastocysts, each of which implants separately into the endometrium of the uterus. Hence, these twins are no more genetically alike than are siblings born at different times. Dizygotic twins and 35% of monozygotic twins have two placentas, two amniotic sacs, and two chorions (i.e., a diamniotic–dichorionic membrane).
- **B. Monozygotic (identical) twins** result from the fertilization of one secondary oocyte by one sperm. The resulting zygote forms a blastocyst in which the inner cell mass (embryoblast)

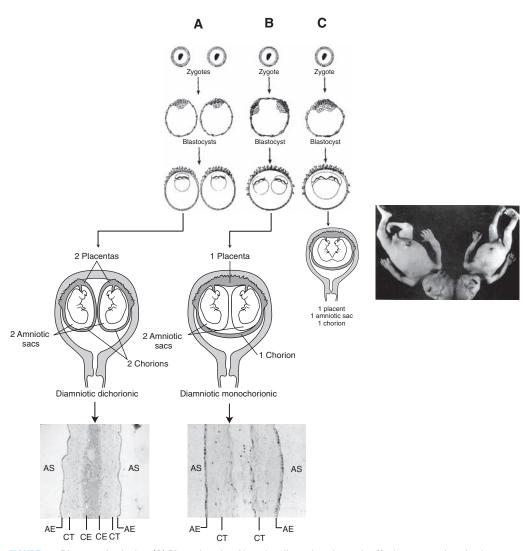


FIGURE 6.6. Diagram of twinning. (A) Dizygotic twins. Note that dizygotic twins and 35% of monozygotic twins have two placentas, two amniotic sacs, and two chorions (diamniotic–dichorionic membrane; remember "222"). Light micrograph shows the histological arrangement of the placental components in dizygotic twins and 35% of monozygotic twins (*boxed area*). Note the two amniotic sacs (AS), two layers of simple cuboidal epithelium of the amnion (AE), a two chorions consisting of connective tissue (CT), and chorionic epithelium (CE). The gross appearance of a diamniotic–dichorionic membrane is opaque, with some remnants of blood vessels. (B) Monozygotic twins. In 65% of cases, monozygotic (identical) twins have one placenta, two amniotic sacs, and one chorion (diamniotic–monochorionic membrane; remember "121"). Light micrograph shows the histological arrangement of the placental components in 65% of monozygotic (identical) twins (*boxed area*). Note the two amniotic sacs (AS), two layers of simple cuboidal epithelium of the amnion (AE), a two chorical) twins (*boxed area*). Note the two amniotic sacs, AAS), two layers of simple cuboidal epithelium of the amnion (AE), and surrounding connective tissue (CT). Also note the absence of the intervening cellular chorionic layer as seen in panel A. The gross appearance of a diamniotic–monochorionic membrane is transparent. (C) Conjoined twins. Twins conjoined at the head (i.e., craniopagus) with lower limb deformities (*arrows*) are shown.

splits into two. Hence, these twins are genetically identical. In 65% of cases, monozygotic (identical) twins have one placenta, two amniotic sacs, and one chorion (i.e., a diamniotic-monochorionic membrane).

C. Conjoined (Siamese) twins form exactly like monozygotic twins, except that the inner cell mass (embryoblast) does not completely split. Hence, two embryos form, but they are joined by tissue bridges at various regions of the body (e.g., head, thorax, or pelvis).

IX. CLINICAL CONSIDERATIONS

- A. Velamentous placenta (Figure 6.7) occurs when the umbilical (fetal) blood vessels abnormally travel through the amniochorionic membrane before reaching the placenta proper. If the umbilical blood vessels cross the internal os, a serious condition called vasa previa exists. In vasa previa, if one of the umbilical (fetal) blood vessels ruptures during pregnancy, labor, or delivery, the fetus will bleed to death. Figure 6.7 shows a velamentous placenta with umbilical (fetal) blood vessels traveling through the amniochorionic membrane (arrow).
- **B.** Circumvallate placenta (Figure 6.8) is a placenta peripheral, cuplike attachment of the amnion on the fetal surface of the placenta. Figure 6.8 shows a circumvallate placenta with a peripheral, cuplike attachment of the amnion (*arrow*).
- **C. Bipartite or tripartite placenta** is a placenta made up of two or three connected lobes.
- **D. Duplex or triplex placenta** is a placenta made up of two or three separate lobes.
- E. Succenturiate placenta is a placenta consisting of small accessory lobes completely separate from the main placenta. Care must be taken to ensure that the accessory lobes are eliminated in the afterbirth.
- **F. Membranous placenta** is a thin placenta that forms over the greater part of the uterine cavity. Care must be taken to ensure that all of the placenta is eliminated during the afterbirth; the condition may require curettage.

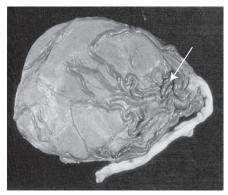


FIGURE 6.7. Velamentous placenta.

FIGURE 6.8. Circumvallate placenta.

- **G. Placenta previa** occurs when the placenta attaches in the lower part of the uterus, **covering the internal os.** The placenta normally implants in the posterior superior wall of the uterus. Uterine (maternal) blood vessels rupture during the later part of pregnancy as the uterus begins to gradually dilate. The mother may bleed to death, and the fetus will also be placed in jeopardy because of the compromised blood supply. Because the placenta blocks the cervical opening, delivery is usually accomplished by cesarean section. This condition is clinically associated with **repeated episodes of bright, red vaginal bleeding**.
- **H. Placental abruption** occurs when a normally implanted placenta prematurely separates from the uterus before delivery of the fetus. It is associated with maternal hypertension.
- I. Placental accreta occurs when there is abnormal adherence of the chorionic villi to the uterine wall with partial or complete absence of the decidua basalis.

- J. Placental percreta occurs when the chorionic villi penetrate the myometrium to reach the perimetrium.
- K. Premature rupture of the amniochorionic membrane is the most common cause of premature labor and oligohydramnios. It is commonly referred to as "breaking of the waters."
- L. Amniotic band syndrome (Figure 6.9) occurs when bands of amniotic membrane encircle and constrict various parts of the fetus, causing limb amputations and craniofacial anomalies. Figure 6.9 shows amniotic band syndrome with a constriction of the right leg (*arrow*) and amputation of the left leg (*arrow*).
- M. Presence of a single umbilical artery (SUA) within the cord is an abnormal condition that is associated with poor intrauterine fetal growth, prematurity, and cardiovascular anomalies. (Normally two umbilical arteries are present.)
- N. Umbilical cord knots (Figure 6.10). The umbilical cord frequently forms loops producing a false knot, which is of no clinical significance. However, in some cases, true knots are formed, which may cause fetal death due to fetal anoxia. Figure 6.10 shows a true knot (*arrow*) of the umbilical cord that caused fetal death.

O. Erythroblastosis fetalis

- 1. The **Rh factor** is clinically important in pregnancy. If the mother is Rh–, she will produce Rh antibodies if the fetus is Rh+. This situation will not affect the first pregnancy, but it will affect the second pregnancy with an Rh+ fetus.
- 2. In the second pregnancy with an Rh+ fetus, a hemolytic condition of red blood cells (RBCs) occurs known as **Rh-hemolytic dis**ease of newborn (erythroblastosis fetalis).

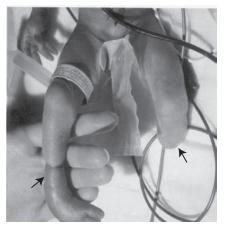


FIGURE 6.9. Amniotic band syndrome.

FIGURE 6.10. A true knot.

- This causes destruction of fetal RBCs, which leads to the release of large amounts of bilirubin (a breakdown product of hemoglobin). This causes fetal brain damage due to a condition called kernicterus, which is a pathological deposition of bilirubin in the basal ganglia.
- **4. Severe hemolytic disease**, whereby the fetus is severely anemic and demonstrates total body edema (i.e., **hydrops fetalis**), may lead to death. In these cases, an intrauterine transfusion is indicated.
- **5. Rh**₀(**D**) **immune globulin (RhoGAM, MICRhoGAM)** is a human immunoglobulin (IgG) preparation that contains antibodies against Rh factor and prevents a maternal antibody response to Rh+ cells that may enter the maternal bloodstream of an Rh– mother. This drug is administered to Rh– mothers within 72 hours after the birth of an Rh+ baby to prevent erythroblastosis fetalis during subsequent pregnancies.

BRS Embryology

66

- **6**. There are two main treatments for erythroblastosis fetalis:
 - **a. Intravascular transfusion (IVT)** of RBCs is indicated for treatment of severe fetal anemia in preterm fetuses in the following conditions: **RBC alloimmunization** (the most prevalent antibodies are anti-D, anti-K1, and anti-c); **parvovirus infection**, which is due to the arrest of bone marrow precursors; **chronic fetomaternal hemorrhage**, which presents a perception by the mother of decreased fetal movements; and **inherited RBC disorders** (e.g., α -thalassemia, congenital dyserythropoietic anemia). The access site for IVT is the **umbilical vein at the umbilical cord insertion** into the placenta (using the umbilical arteries is associated with fetal bradycardia) or the **intrahepatic part of the umbilical vein**. IVTs are performed between **18 and 35 weeks of gestation**. IVTs prior to 18 weeks of gestation are rarely successful because of the small size of anatomical structures and limited visualization. IVTs after 35 weeks of gestation are not done because IVT-related morbidity is greater than morbidity associated with delivery.
 - **b. Rh**₀(**D**) **immune globulin (RhoGAM, MICRhoGAM)** is a human IgG preparation that contains antibodies against Rh factor and prevents a maternal antibody response to Rh+ cells that may enter the maternal bloodstream of an Rh– mother. This drug is administered to Rh– mothers within 72 hours after the birth of an Rh+ baby to prevent ery-throblastosis fetalis during subsequent pregnancies.
- P. Oligohydramnios occurs when there is a low amount of amniotic fluid (<400 mL in late pregnancy). Oligohydramnios may be associated with the inability of the fetus to excrete urine into the amniotic sac due to renal agenesis. This results in many fetal deformities (Potter syndrome) and hypoplastic lungs due to increased pressure on the fetal thorax.</p>
- **0. Polyhydramnios** occurs when there is a high amount of amniotic fluid (>2000 mL in late pregnancy). Polyhydramnios may be associated with the inability of the fetus to swallow due to **tracheoesophageal fistula**, esophageal **atresia**, or **anencephaly**. Polyhydramnios is commonly associated with **maternal diabetes**.
- **R.** α -Fetoprotein (AFP) is "fetal albumin" that is produced by fetal hepatocytes. AFP is routinely assayed in amniotic fluid and maternal serum between weeks 14 and 18 of gestation. AFP levels change with gestational age, so that proper interpretation of AFP levels is dependent upon an accurate gestational age.
 - 1. Elevated AFP levels are associated with neural tube defects (e.g., spina bifida or anencephaly), omphalocele (which allows fetal serum to leak into the amniotic fluid), and esophageal and duodenal atresia (which interfere with fetal swallowing).
 - 2. Reduced AFP levels are associated with Down syndrome.

S. Preeclampsia and eclampsia

- **1.** Preeclampsia is a complication of pregnancy characterized by hypertension, edema, and/or proteinuria.
- Severe preeclampsia refers to the sudden development of maternal hypertension (>160/110 mm Hg), edema (hands and/or face), and proteinuria (>5 g/24 hours) usually after week 32 of gestation (third trimester).
- **3.** Eclampsia includes the additional symptom of convulsions.
- **4.** The pathophysiology of preeclampsia involves a **generalized arteriolar constriction** that affects the brain (seizures and stroke), kidneys (oliguria and renal failure), liver (edema), and small blood vessels (thrombocytopenia and disseminated intravascular coagulation).
- **5.** Treatment of severe preeclampsia involves **magnesium sulfate** (for seizure prophylaxis) and **hydralazine** (blood pressure control); once the patient is stabilized, delivery of the fetus should ensue immediately.
- **6.** Risk factors include nulliparity, diabetes, hypertension, renal disease, twin gestation, or hydatidiform mole (produces **first trimester preeclampsia**).

Study Questions for Chapter 6

1. During the later stages of pregnancy, maternal blood is separated from fetal blood by the

- (A) syncytiotrophoblast only
- (B) cytotrophoblast only
- (C) syncytiotrophoblast and cytotrophoblast
- **(D)** syncytiotrophoblast and fetal endothelium
- (E) cytotrophoblast and fetal endothelium

2. The maternal and fetal components of the placenta are

- (A) decidua basalis and secondary chorionic villi
- (B) decidua capsularis and secondary chorionic villi
- (C) decidua parietalis and tertiary chorionic villi
- (D) decidua capsularis and villous chorion
- (E) decidua basalis and villous chorion

3. The intervillous space of the placenta contains

- (A) maternal blood
- (B) fetal blood
- (C) maternal and fetal blood
- (D) amniotic fluid
- (E) maternal blood and amniotic fluid

4. A young insulin-dependent diabetic woman in her first pregnancy is concerned that her daily injection of insulin will cause a congenital malformation in her baby. What should the physician tell her?

- (A) Insulin is highly teratogenic; discontinue treatment
- (B) Insulin does not cross the placental membrane
- **(C)** Insulin crosses the placental membrane but is degraded rapidly
- (D) Insulin will benefit her baby by increasing glucose metabolism
- (E) Insulin crosses the placental membrane but is not teratogenic

5. What is a normal amount of amniotic fluid at term?

- (A) 50 mL
- (**B**) 500 mL
- (**C**) 1000 mL
- (**D**) 1500 mL
- **(E)** 2000 mL

6. Which of the following does not pass through the primitive umbilical ring?

- (A) Allantois
- (B) Amnion
- (C) Yolk sac
- **(D)** Connecting stalk
- (E) Space connecting the intraembryonic and extraembryonic coeloms

7. Which of the following best describes the placental components of dizygotic twins?

- (A) One placenta, two amniotic sacs, one chorion
- **(B)** One placenta, two amniotic sacs, two chorions
- (C) Two placentas, two amniotic sacs, one chorion
- **(D)** Two placentas, two amniotic sacs, two chorions
- (E) One placenta, two amniotic sacs, two chorions

8. A 26-year-old pregnant woman

experiences repeated episodes of bright red vaginal bleeding at week 28, week 32, and week 34 of pregnancy. The bleeding spontaneously subsided each time. Use of ultrasound shows that the placenta is located in the lower right portion of the uterus over the internal os. What is the diagnosis?

- (A) Hydatidiform mole
- (B) Vasa previa
- (C) Placenta previa
- **(D)** Placental abruption
- (E) Premature rupture of the amniochorionic membrane

9. A 19-year-old woman in week 32 of a complication-free pregnancy is rushed to the emergency department because of profuse vaginal bleeding. The bleeding subsides, but afterward no fetal heart sounds can be heard, indicating intrauterine fetal death. The woman goes into labor and delivers a stillborn infant. On examination of the afterbirth, a velamentous placenta is detected. Although not much can be done at this point, what is the diagnosis?

- (A) Placenta previa
- (B) Vasa previa
- (C) Hydatidiform mole
- **(D)** Premature rupture of the amniochorionic membrane
- (E) Amniotic band syndrome

10. A 32-year-old pregnant woman at 30 weeks of gestation comes to her physician because of excess weight gain in a 2-week period. Ultrasonography reveals polyhydramnios. Which fetal abnormality is most likely responsible for the polyhydramnios?

- (A) Bilateral kidney agenesis
- (B) Umbilical cord knots
- (C) Velamentous placenta
- **(D)** Hypoplastic lungs
- (E) Esophageal atresia

11. A 25-year-old pregnant woman at 17 weeks of gestation comes to her OB/GYN for a normal examination. During routine blood tests, her serum α -fetoprotein (AFP) concentration is found to be markedly decreased for her gestational age. Which abnormality will the physician need to rule out based on these low AFP levels?

- (A) Spina bifida
- (B) Anencephaly
- (C) Omphalocele
- (D) Down syndrome
- (E) Esophageal atresia

Answers and Explanations

- **1. D**. During the later stages of pregnancy, the placental membrane becomes very thin and consists of two layers—the syncytiotrophoblast and the fetal endothelium.
- **2. E.** The placenta is a unique organ, in that it is a composite of tissue from two different sources—the mother and fetus. The maternal component is the decidua basalis, and the fetal component is the villous chorion.
- **3. A.** The intervillous space contains only maternal blood as the spiral arteries of the endometrium penetrate the outer cytotrophoblast shell.
- **4. B.** Insulin, like all protein hormones, does not cross the placental membrane in significant amounts.
- **5. C.** The normal amount of amniotic fluid at term is 1000 mL. However, the amount of amniotic fluid at various stages of pregnancy can be indicative of congenital malformations. Oligohydramnios (400 mL in late pregnancy) may be indicative of renal agenesis. Polyhydramnios (2000 mL in late pregnancy) may be indicative of either anencephaly or esophageal atresia.
- **6. B.** The amnion does not pass through the primitive umbilical ring. As craniocaudal folding occurs, the amnion becomes the outer covering of the umbilical cord.
- **7. D**. Dizygotic twins and 35% of monozygotic twins have two placentas, two amniotic sacs, and two chorions ("222").
- **8. C.** A placenta implanted in the lower part of the uterus near the internal os is called placenta previa. The repeated episodes of bright-red vaginal bleeding are caused by the gradual dilation of the uterus in the later stages of pregnancy. As the uterus dilates, spiral arteries and veins supplying the placenta are ruptured. The mother may bleed to death, and the fetus is placed in jeopardy because of the compromised maternal blood flow.
- **9. B.** A velamentous placenta occurs when umbilical blood vessels abnormally travel through the amniochorionic membrane before reaching the placenta proper. If the vessels cross the internal os, a serious condition called vasa previa exists. As the fetus grows during pregnancy and the amniochorionic membrane stretches, the umbilical vessels may rupture. When that happens, the fetus will bleed to death. The mother is in no danger of bleeding to death in vasa previa because only the umbilical vessels rupture.
- **10. E.** Polyhydramnios is associated with the inability of the fetus to swallow because of esophageal atresia or anencephaly. Polyhydramnios can also result from absorption defects such as duodenal atresia. The inability of the embryo to swallow the amniotic fluid means that the fluid cannot be absorbed into the fetal blood and removed by the placenta and passed into the maternal blood.
- **11. D.** Reduced AFP levels are associated with Down syndrome. All of the other defects (neural tube defects such as spina bifida and anencephaly, omphalocele, and esophageal atresias) are associated with elevated AFP levels.

Nervous System

I. OVERVIEW

- A. Central nervous system (CNS) is formed in week 3 of development, during which time the neural plate develops. The neural plate, consisting of neuroectoderm, becomes the neural tube, which gives rise to the brain and spinal cord.
- B. Peripheral nervous system (PNS) is derived from three sources:
 - 1. Neural crest cells (see Section III)

7

- **2.** Neural tube, which gives rise to all preganglionic autonomic nerves (sympathetic and parasympathetic) and all nerves (α -motoneurons and γ -motoneurons) that innervate skeletal muscles
- **3. Mesoderm**, which gives rise to the **dura mater** and to connective tissue investments of peripheral nerve fibers (**endoneurium**, **perineurium**, and **epineurium**)

II. DEVELOPMENT OF THE NEURAL TUBE (FIGURE 7.1)

Neurulation refers to the formation and closure of the neural tube. **BMP-4** (bone morphogenetic protein), **noggin** (an inductor protein), **chordin** (an inductor protein), **FGF-8** (fibroblast growth factor), and **N-CAM** (neural cell adhesion molecule) appear to play a role in neurulation. The events of neurulation occur as follows:

- **A.** The **notochord** induces the overlying ectoderm to differentiate into **neuroectoderm** and form the **neural plate**. The notochord forms the **nucleus pulposus** of the intervertebral disk in the adult.
- **B**. The neural plate folds to give rise to the **neural tube**, which is open at both ends at the **anterior** and **posterior neuropores**. The anterior and posterior neuropores connect the lumen of the neural tube with the amniotic cavity.
 - **1.** The **anterior neuropore** closes during week 4 (day 25) and becomes the **lamina terminalis**. Failure of the anterior neuropore to close results in upper neural tube defects (NTDs; e.g., **anencephaly**).
 - **2.** The **posterior neuropore** closes during week 4 (day 27). Failure of the posterior neuropore to close results in lower NTDs (e.g., **spina bifida with myeloschisis**).
- **C.** As the neural plate folds, some cells differentiate into **neural crest cells**.
- D. The rostral part of the neural tube becomes the adult brain.
- E. The caudal part of the neural tube becomes the adult **spinal cord**.
- **F.** The lumen of the neural tube gives rise to the **ventricular system** of the brain and **central canal** of the spinal cord.

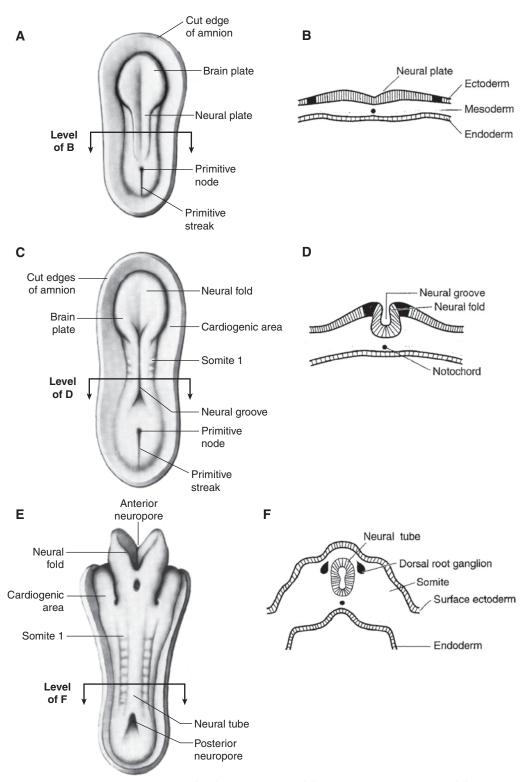


FIGURE 7.1. Development of the neural tube. (A, B) Neural plate stage. (A) Dorsal view of a human embryo. (B) Transverse section of a human embryo at the level shown in panel A. (C, D) Neural groove stage. (C) Dorsal view of a human embryo. (D) Transverse section of a human embryo at the level shown in panel C. (E, F) Early neural tube stage. (E) Dorsal view of a human embryo of a human embryo at the level shown in panel C. (E, F) Early neural tube stage. (E) Dorsal view of a human embryo at human embryo at the level shown in panel E.

III. NEURAL CREST CELLS (FIGURE 7.1)

The neural crest cells differentiate from cells located along the lateral border of the neural plate, which is mediated by **BMP-4** and **BMP-7**. Neural crest cells undergo a prolific migration throughout the embryo (both the cranial region and trunk region) and ultimately differentiate into a wide array of adult cells and structures (see Chapter 4, Table 4.1).

A. Cranial neural crest cells

- **1.** There is a remarkable relationship between the origin of cranial neural crest cells from the rhombencephalon (hindbrain) and their final migration into pharyngeal arches (see Chapter 12, Table 12.1).
- 2. The rhombencephalon is divided into eight segments called rhombomeres (R1-R8).
- **3.** Cranial neural crest cells from R1 and R2 migrate into pharyngeal arch 1 (which also receives neural crest cells from the midbrain area).
- 4. Cranial neural crest cells from R4 migrate into pharyngeal arch 2.
- 5. Cranial neural crest cells from R6 and R7 migrate into pharyngeal arch 3.
- 6. Cranial neural crest cells differentiate into the following adult cells and structures:
 - a. Pharyngeal arch skeletal and connective tissue components
 - b. Bones of neurocranium
 - c. Pia and arachnoid
 - d. Parafollicular (C) cells of thyroid
 - e. Aorticopulmonary septum
 - f. Odontoblasts (dentin of teeth)
 - g. Sensory ganglia of cranial nerve (CN) V, CN VII, CN IX, and CN X
 - Ciliary (CN III), pterygopalatine (CN VII), submandibular (CN VII), and otic (CN IX) parasympathetic ganglia.

B. Trunk neural crest cells

- **1.** Trunk neural crest cells extend from somite 6 to the most caudal somites and migrate in a dorsolateral, ventral, and ventrolateral direction throughout the embryo.
- **2.** Trunk neural crest cells differentiate into the following adult cells and structures:
 - a. Melanocytes
 - b. Schwann cells
 - c. Chromaffin cells of adrenal medulla
 - d. Dorsal root ganglia
 - e. Sympathetic chain ganglia
 - f. Prevertebral sympathetic ganglia
 - g. Enteric parasympathetic ganglia of the gut (Meissner and Auerbach; CN X)
 - h. Abdominal/pelvic cavity parasympathetic ganglia.
- **C. Clinical considerations**. **Neurocristopathy** is a termed used to describe any disease related to maldevelopment of neural crest cells.
 - 1. Medullary carcinoma of thyroid (MC). MC is an endocrine neoplasm of the parafollicular (C) cells of neural crest origin that secrete calcitonin. The carcinoma cells are usually arranged in cell nests surrounded by bands of stroma containing amyloid. MC can be either sporadic (80% of cases) or familial (20% of cases). The familial type of MC is associated with the MEN (multiple endocrine neoplasia) 2A and 2B syndromes. The familial MEN type 2A syndrome consists of medullary carcinoma of the thyroid, parathyroid adenoma, and a pheochromocytoma. The familial MEN type 2B syndrome consists of medullary carcinoma of the lips and tongue, pheochromocytoma, and a marfanoid habitus. The MEN syndrome is an autosomal dominant genetic disorder caused by a mutation in the *RET* protooncogene on chromosome 10q11.2 for the ret receptor tyrosine kinase. Mutations in the *RET* protooncogene result in a gain-of-function mutation whereby the ret receptor tyrosine kinase becomes constitutively activated.

- 2. Schwannoma. A schwannoma is a benign tumor of Schwann cells of neural crest origin. These tumors are well-circumscribed, encapsulated masses that may or not be attached to the nerve. The most common location within the cranial vault is at the cerebellopontine angle near the vestibular branch of CN VIII (often referred to as an acoustic neuroma). Clinical signs include tinnitus and hearing loss. CN V (trigeminal nerve) is also commonly affected.
- 3. Neurofibromatosis type 1 (NF1; von Recklinghausen disease; Figure 7.2). NF1 is a relatively common autosomal dominant genetic disorder caused by a mutation in the **NF1** gene on chromosome 17q11.2 for the neurofibromin protein. More than 500 different mutations of the NF1 gene have been identified, which include missense, nonsense, and frameshift mutations, whole-gene deletions, intragenic deletions, and **RNA-splicing mutations**, all of which result in a loss-of-function mutation. Neurofibromin downregulates **p21 ras oncoprotein**, so the NF1 gene belongs to the family of **tumor-suppressor** genes and regulates cAMP levels. Clinical features include multiple neural tumors (called neurofibromas) that are widely dispersed over the body and reveal proliferation of all elements of a peripheral nerve, including neurites, fibroblasts, and Schwann cells of neural crest origin, numerous pigmented skin lesions (called café au lait spots) probably associated with melanocytes of neural crest origin, axillary and inguinal freckling, scoliosis, vertebral dysplasia, and pigmented iris hamartomas (called Lisch nodules). Figure 7.2 shows a woman with generalized neurofibromas on the face and arms.
- 4. CHARGE association. The CHARGE association is understandable only if the wide distribution of neural crest cell derivatives is appreciated. The cause of CHARGE is unknown, but it seems to involve an insult during the second month of gestation probably involving the neural crest cells. The key features of CHARGE include coloboma of the retina, lens, or choroid; heart defects (e.g., tetralogy of Fallot, ventricular septal defect [VSD], patent ductus arteriosus [PDA]); atresia choanae; retardation of growth; genital abnormalities in male infants (e.g., cryptorchidism, microphallus); and ear abnormalities or deafness.
- Waardenburg syndrome (WS; Figure 7.3) is an autosomal dominant genetic disorder caused by a mutation in either the *PAX3* gene on chromosome 2q35 (for type I WS) encoding for the <u>paired box</u> protein PAX3 or the *MITF* gene on

FIGURE 7.2. Neurofibromatosis type 1; von Recklinghausen disease.

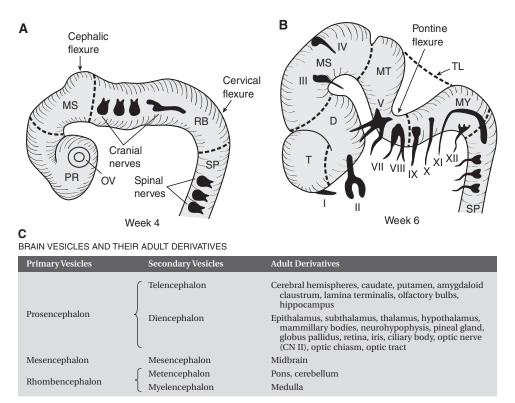
FIGURE 7.3. Waardenburg syndrome.

BRS Embryology

chromosome 3p14.3-p14.1 (for type II WS) encoding for the <u>microphthalmia-associated tran</u> scription factor. Paired box protein gene *PAX3* is one of a family of nine human PAX genes coding for **DNA-binding transcription factors** that are expressed in the early embryo. The mutations of the *PAX3* gene include missense, nonsense, and frameshift mutations, wholegene deletions, intragenic deletions, and **RNA splicing mutations**, all of which result in a lossof-function mutation. Clinical features include dystopia canthorum (malposition of the eyelid), growing together of eyebrows, lateral displacement of lacrimal puncta, a broad nasal root, heterochromia of the iris, congenital deafness or hearing impairment, and piebaldism, including a white forelock and a triangular area of hypopigmentation. Figure 7.3 shows a woman with a white forelock and bilateral profound hearing loss.

- 6. Hirschsprung disease. See Chapter 10, Section IV.B.
- 7. Cleft palate and lip. See Chapter 12, Sections VIII.G and VIII.H.
- 8. DiGeorge syndrome. See Chapter 12, Section VIII.I.
- 9. Pheochromocytoma. See Chapter 13, Section IX.C.
- **10**. **Neuroblastoma**. See Chapter 13, Section IX.C.

IV. PLACODES


Placodes are localized thickenings of surface **ectoderm**. They give rise to cells that migrate into underlying mesoderm and develop into sensory receptive organs of cranial nerves (CN I and CN VIII) and the lens of the eye. There are three placodes:

- **A.** Nasal (olfactory) placode. The nasal (olfactory) placodes differentiate into neurosensory cells that give rise to the **olfactory nerve (CN I)** and induce formation of olfactory bulbs.
- B. Otic placode. The otic placodes give rise to the otic vesicle, which forms the following:
 - 1. Utricle, semicircular ducts, and vestibular ganglion of CN VIII
 - 2. Saccule, cochlear duct (organ of Corti), spiral ganglion of CN VIII
 - 3. Vestibulocochlear nerve (CN VIII)
- C. Lens placode. The lens placode gives rise to the lens and is induced by the optic vesicles.

V. VESICLE DEVELOPMENT OF THE NEURAL TUBE (FIGURE 7.4)

A. The three **primary brain vesicles** and two associated **flexures** develop during week 4.

- **1**. Primary brain vesicles
 - **a. Prosencephalon (forebrain)** is associated with the appearance of the **optic vesicles** and gives rise to the **telencephalon** and **diencephalon**.
 - b. Mesencephalon (midbrain) remains as the mesencephalon.
 - c. Rhombencephalon (hindbrain) gives rise to the metencephalon and myelencephalon.
- 2. Flexures
 - **a. Cephalic flexure (midbrain flexure)** is located between the prosencephalon and the rhombencephalon.
 - **b.** Cervical flexure is located between the rhombencephalon and the future spinal cord.
- **B.** The five **secondary brain vesicles** become visible in week 6 of development and form various adult derivatives of the brain.
 - 1. Telencephalon gives rise to the cerebral hemispheres, caudate, and putamen.
 - **2. Diencephalon** gives rise to the epithalamus, subthalamus, thalamus, hypothalamus, mammillary bodies, neurohypophysis, pineal gland, globus pallidus, retina, iris, ciliary body, optic nerve (CN II), optic chiasm, and optic tract.
 - **3**. **Mesencephalon** gives rise to the midbrain.
 - 4. Metencephalon gives rise to the pons and cerebellum.
 - 5. Myelencephalon gives rise to the medulla.

FIGURE 7.4. Schematic illustrations of the developing brain vesicles. **(A)** Three-vesicle stage of the brain in a 4-week-old embryo. Divisions are indicated by dashed lines. PR = prosencephalon; MS = mesencephalon; RB = rhombencephalon; SP = spinal cord; OV = optic vesicle.**(B)**Five-vesicle stage of the brain in a 6-week-old embryo. Divisions are indicated by dashed lines. Cranial nerves (CN) are indicated by Roman numerals. CN VI is not shown because it exits the brain stem from the ventral surface. T = telencephalon; D = diencephalon; MS = mesencephalon; MT = metencephalon; MY = myelencephalon; TL = tela choroidea; SP = spinal cord.**(C)**Table indicating the brain vesicles and their adult derivatives.

VI. HISTOGENESIS OF THE NEURAL TUBE

The cells of the neural tube are neuroectodermal (or neuroepithelial) cells that give rise to the following cell types:

- A. Neuroblasts form all neurons found in the CNS.
- **B. Glioblasts (spongioblasts)** are, for the most part, formed after cessation of neuroblast formation. Radial glial cells are an exception and develop before neurogenesis is complete. Glioblasts form the supporting cells of the CNS and include the following:
 - **1. Astrocytes (Figure 7.5)** have the following characteristics and functions: project foot processes to capillaries that contribute to the blood–brain barrier, play a role in the metabolism of neurotransmitters (e.g., glutamate, γ -aminobutyrate [GABA], serotonin), buffer the [K⁺] of the CNS extracellular space, form the external and internal glial-limiting membrane in the CNS, form glial scars in a

FIGURE 7.5. Protoplasmic astrocyte.

damaged area of the CNS (i.e., astrogliosis), undergo hypertrophy and hyperplasia in reaction to CNS injury, and contain the **glial fibrillary acidic protein (GFAP)** and **glutamine synthetase**, which are good markers for astrocytes. Figure 7.5 shows a protoplasmic astrocyte.

- **2. Oligodendrocytes (Figure 7.6)** produce the **myelin** in the CNS. A single oligodendrocyte can myelinate several (up to 30) axons. Figure 7.6 shows an oligodendrocyte.
- **3. Ependymocytes (Figure 7.7)** line the central canal and ventricles of the brain. These cells are not joined by tight junctions, so that exchange between the cerebrospinal fluid (CSF) and CNS extracellular fluid occurs freely. Figure 7.7 shows ependymocytes lining the ventricle of the brain.
- **4. Tanycytes (Figure 7.8)** are modified ependymal cells that mediate transport between CSF in the ventricles and the neuropil. These cells usually project to hypothalamic nuclei that regulate the release of gonadotropic hormones from the adenohypophysis. Figure 7.8 shows a tanycyte within the ependymal lining of the ventricle.
- 5. Choroid plexus cells (Figure 7.9) are a continuation of the ependymal lining that is reflected over the choroid plexus villi and secrete CSF by selective transport of molecules from blood. These cells are joined by tight junctions (zonula occludens), which are the basis of the blood–CSF barrier. CSF is normally clear. A yellow color (xanthochromia) indicates previous bleeding (subarachnoid hemorrhage) or increased protein. A pinkish color is usually due to a bloody tap. Turbidity is due to the presence of leukocytes. Figure 7.9 shows choroid plexus cells.

FIGURE 7.6. Oligodendrocyte.

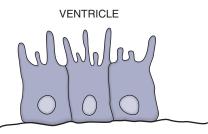
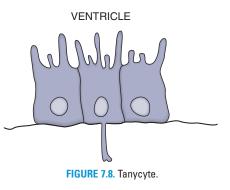



FIGURE 7.7. Ependymal cells.

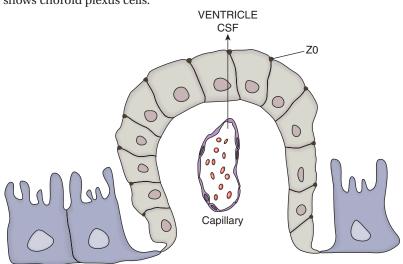
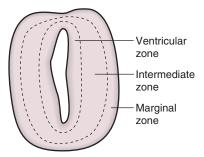
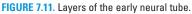


FIGURE 7.9. Choroid plexus cells. CSF = cerebrospinal fluid; ZO = zonula occludens.

6. Microglia (Hortega cells; Figure 7.10) are the macrophages of the CNS, which arise from monocytes and invade the developing nervous system in week 3 along with the developing blood vessels. Figure 7.10 shows a microglial cell.




FIGURE 7.10. Microglial cell.

VII. LAYERS OF THE EARLY NEURAL TUBE (FIGURE 7.11)

A. Ventricular Zone

- **1.** The early neural tube consists of neuroectoderm arranged in a pseudostratified columnar arrangement.
- **2.** A first wave of proliferation and differentiation of the neuroectoderm gives rise to **neuroblasts**, which migrate into the intermediate zone.
- **3.** A second wave of proliferation and differentiation of the neuroectoderm gives rise to **glioblasts**, which migrate into the intermediate zone and marginal zone.
- 4. The neuroectoderm that remains in the ventricular zone gives rise to **ependymocytes**, **tanycytes**, and **choroid plexus cells**.

B. Intermediate Zone

- **1**. The intermediate zone contains **neuroblasts**, which differentiate into **neurons** with dendrites and axons.
- 2. The intermediate zone also contains glioblasts, which differentiate into astrocytes and oligodendrocytes.
- 3. The intermediate zone forms the gray matter of the central nervous system.
- **4.** The intermediate zone is divided into the **alar plate**, associated with sensory (afferent) functions, and the **basal plate**, associated with motor (efferent) functions.

C. Marginal Zone

- 1. The marginal zone contains **axons** from neurons within the intermediate zone.
- 2. The marginal zone also contains glioblasts, which differentiate into astrocytes and oligodendrocytes.
- 3. The marginal zone forms the white matter of the central nervous system.

VIII. DEVELOPMENT OF THE SPINAL CORD (FIGURE 7.12)

The spinal cord develops from the neural tube caudal to the fourth pair of somites.

A. Alar (sensory) plate

- 1. The alar plate is a **dorsolateral** thickening of the intermediate zone of the neural tube.
- **2.** The alar plate gives rise to **sensory neuroblasts of the dorsal horn** (general somatic afferent [GSA] and general visceral afferent [GVA] cell regions).
- **3.** The alar plate receives axons from the dorsal root ganglia that become the **dorsal** (sensory) roots.
- 4. The alar plate becomes the dorsal horn of the spinal cord.

B. Basal (motor) plate

C. Sulcus limitans (SL)

- **1.** The basal plate is a **ventrolateral** thickening of the intermediate zone of the neural tube.
- **2.** The basal plate gives rise to **motor neuroblasts of the ventral and lateral horns** (general somatic efferent [GSE] and general visceral efferent [GVE] cell regions).
- **3.** The basal plate projects axons from motor neuroblasts, which exit the spinal cord and become the **ventral (motor) roots**.
- 4. The basal plate becomes the ventral horn of the spinal cord.

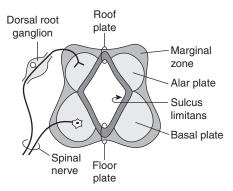


FIGURE 7.12. Development of the spinal cord.

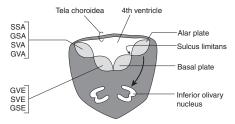
- **1.** The SL is a **longitudinal groove** in the lateral wall of the neural tube that appears during week 4 of development and separates the alar and basal plates.
- **2.** The SL disappears in the adult spinal cord but is retained in the rhomboid fossa of the brain stem.
- **3.** The SL extends from the spinal cord to the rostral midbrain.
- **D**. The **roof plate** is the nonneural roof of the central canal, which connects the two alar plates.
- **E.** The **floor plate** is the nonneural floor of the central canal, which connects the two basal plates. The floor plate contains the ventral white commissure.

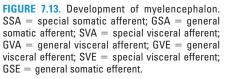
F. Myelination

- 1. Myelination of the spinal cord begins during month 4 in the ventral (motor) roots.
- 2. Oligodendrocytes accomplish myelination in the CNS.
- **3.** Schwann cells accomplish myelination in the PNS.
- **4.** Myelination of the corticospinal tracts is not completed until the end of 2 years of age (i.e., when the corticospinal tracts become myelinated and functional).
- 5. Myelination of the association neocortex extends to 30 years of age.

G. Positional changes of the spinal cord

- **1.** At week 8 of development, the spinal cord extends the length of the vertebral canal.
- 2. At birth, the conus medullaris extends to the level of the third lumbar vertebra (L3).
- 3. In adults, the conus medullaris terminates at L1–L2 interspace.
- **4.** Disparate growth between the vertebral column and the spinal cord results in the formation of the **cauda equina**, consisting of dorsal and ventral roots (L3–Co), which descends below the level of the conus medullaris.
- **5.** Disparate growth results in the nonneural **filum terminale**, which anchors the spinal cord to the coccyx.

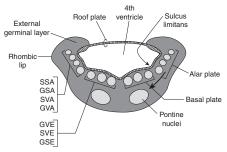

IX. DEVELOPMENT OF THE MYELENCEPHALON (FIGURE 7.13)


The myelencephalon develops from the caudal **rhombencephalon** and gives rise to the **medulla oblongata**.

- A. Alar plate sensory neuroblasts give rise to the following:
 - **1. Cochlear and vestibular nuclei,** which form the special somatic afferent (SSA) column and in the medullopontine junction

plates.

- **2. Spinal trigeminal nucleus**, which forms the general somatic afferent (GSA) column
- **3. Solitary nucleus,** which forms the special visceral afferent (SVA; taste) and general visceral afferent (GVA) columns
- **4. Dorsal column nuclei**, which consist of the gracile and cuneate nuclei
- **5. Inferior olivary nuclei**, which are cerebellar relay nuclei and are derived from the alar plate by migrating to a ventral position (see *arrow* in Figure 7.13)


- B. Basal plate motor neuroblasts give rise to the following:
 - 1. Dorsal motor nucleus of the vagus nerve (CN X) and the inferior salivatory nucleus of the glossopharyngeal nerve (CN IX), which form the general visceral efferent (GVE) column
 - **2.** Nucleus ambiguus, which forms the special visceral efferent (SVE) column (CN IX, CN X, and CN XI)
 - 3. Hypoglossal nucleus, which forms the general somatic efferent (GSE) column
- **C.** The **roof plate** forms the roof of the fourth ventricle. The roof plate is called the **tela choroidea**, which is a monolayer of ependymal cells covered with pia mater. The tela choroidea is invaginated by pial blood vessels to form the **choroid plexus** of the fourth ventricle.
- **D.** The **open (rostral) medulla** extends from the obex to the stria medullares of the rhomboid fossa. The lateral walls of the rostral medulla open like a book and form the rhomboid fossa (i.e., the floor of the fourth ventricle) due to the formation of the pontine flexure.

X. DEVELOPMENT OF THE METENCEPHALON

The metencephalon develops from the rostral **rhombencephalon** and gives rise to the **pons** and **cerebellum**.

A. Pons (Figure 7.14)

- **1. Alar plate sensory neuroblasts** give rise to the following:
 - **a. Cochlear and vestibular nuclei,** which form the special somatic afferent (SSA) column of CN VIII
 - **b. Spinal and principal trigeminal nuclei,** which form the general somatic afferent (GSA) column of CN V
 - **c. Solitary nucleus,** which forms the special visceral afferent (SVA; taste) and general visceral afferent (GVA) columns of CN VII
 - **d. Pontine nuclei**, which consist of cerebellar relay nuclei (pontine gray) and are derived from the alar plate by migrating to a ventral position (*arrow* in Figure 7.14)

FIGURE 7.14. Development of the metencephalon: pons. SSA = special somatic afferent; GSA = general somatic afferent; SVA = special visceral afferent; GVA = general visceral afferent; GVE = general visceral efferent; SVE = special visceral efferent; GSE = general somatic efferent.

BRS Embryology

- 2. Basal plate motor neuroblasts give rise to the following:
 - **a. Superior salivatory nucleus,** which forms the general visceral efferent (GVE) column of CN VII
 - **b.** Facial (CN VII) and motor trigeminal (CN V) nuclei, which form the special visceral efferent (SVE) column
 - c. Abducent (CN VI) nucleus, which forms the general somatic efferent (GSE) column
- **3. Base of the pons.** The base of the pons contains the following:
 - **a**. Pontine nuclei from the alar plate
 - **b.** Corticobulbar, corticospinal, and corticopontine fibers, whose cell bodies are located in the cerebral cortex
 - c. Pontocerebellar fibers

B. Cerebellum

- **1.** The cerebellum is formed from the **rhombic lips**, which are the two dorsolateral thickened alar plates.
- **2.** The rhombic lips thicken at week 6 to form the **cerebellar plate**, which has a dumbbell appearance.
- 3. The cerebellar plate is separated into cranial and caudal portions by a transverse groove.
- **4**. The caudal portion forms the **flocculonodular lobe**, which is the most primitive part of the cerebellum.
- **5.** The cranial portion forms the **vermis** and the **cerebellar hemispheres**, both of which undergo extensive formation of **fissures** and **folia**.
- **6.** Like the rest of the neural tube, the rhombic lips consist of neuroectoderm arranged in the ventricular zone, intermediate zone, and marginal zone.
- **7.** In month 3, the neuroectoderm in the ventricular zone undergoes another wave of proliferation to form the **internal germinal layer**. The internal germinal layer gives rise to the following:
 - a. Deep cerebellar nuclei (i.e., dentate, emboliform, globose, and fastigial nuclei)
 - b. Purkinje cells
 - c. Golgi cells
- **8**. Some neuroectodermal cells from the internal germinal layer migrate through the marginal zone to form the **external germinal layer**. The external germinal layer gives rise to the following:
 - a. Basket cells
 - b. Granule cells
 - c. Stellate cells
- **9**. Both the external and internal germinal layers give rise to **astrocytes**, **Bergmann cells**, and **oligodendrocytes** within the cerebellum.

XI. DEVELOPMENT OF THE MESENCEPHALON (FIGURE 7.15)

The mesencephalon remains unchanged during primary to secondary vesicle formation and gives rise to the **midbrain**.

- **A. Alar plate sensory neuroblasts** gives rise to the **superior colliculi** and the **inferior colliculi** (*arrows* in Figure 7.15 indicate the direction of migration)
- **B. Basal plate motor neuroblasts** give rise to the following:
 - 1. Edinger-Westphal nucleus of CN III, which forms the general visceral efferent (GVE) column

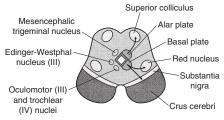
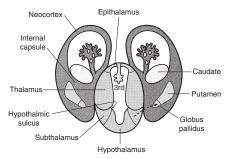
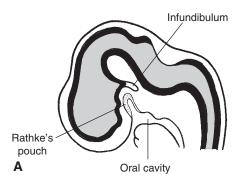



FIGURE 7.15. Transverse section of the development of the midbrain.

- 2. Oculomotor (CN III) nucleus, which forms the general somatic efferent (GSE) column
- 3. Substantia nigra (arrows indicate direction of migration)
- 4. Red nucleus (arrows indicate direction of migration)
- **C. Crus cerebri** contain corticobulbar, corticospinal, and corticopontine fibers, derived from the cerebral cortex of the telencephalon.
- D. The trochlear (CN IV) nucleus and a portion of the sensory mesencephalic trigeminal (CN V) nucleus originate in the metencephalon and secondarily migrate into the mesencephalon.


XII. DEVELOPMENT OF THE DIENCEPHALON, OPTIC STRUCTURES, AND HYPOPHYSIS

- A. Diencephalon (Figure 7.16) develops from the prosencephalon within the walls of the primitive third ventricle. The alar plates remain prominent in the prosencephalon, but the basal plates regress. The diencephalon gives rise to the epithalamus, thalamus, subthalamus, and hypothalamus.
 - Epithalamus develops from the embryonic roof plate and dorsal parts of alar plates. The epithalamus gives rise to the pineal body (epiphysis), habenular nuclei, habenular commissure, posterior commissure, tela choroidea, and the choroid plexus of the third ventricle.
 - 2. Thalamus is an alar plate derivative that gives rise to the thalamic nuclei, lateral geniculate body, and medial geniculate body.
 - **3. Subthalamus** is an alar plate derivative. The subthalamus includes the **subthalamic nucleus**, **zona incerta**, and **lenticular and thalamic fasciculi (fields of Fortel)**. The subthalamus gives rise to neuroblasts that migrate (*arrow* in Figure 7.16) into the telencephalic white matter to become the **globus pallidus (pallidum)**, which is a basal ganglion.
 - 4. Hypothalamus develops from the alar plate and floor plate ventral to the hypothalamic sulcus. The hypothalamus gives rise to hypothalamic nuclei, mammillary bodies, and neurohypophysis.
- B. Optic vesicles, cups, and stalks are derivatives of diencephalon. They give rise to the retina, iris, ciliary body, optic nerve (CNII), optic chiasm, and optic tract (see Chapter 9).

- C. Hypophysis (pituitary gland) (Figure 7.17) is attached to the hypothalamus by the pituitary stalk and consists of the anterior lobe (adenohypophysis) and the posterior lobe (neurohypophysis).
 - 1. Anterior lobe (adenohypophysis) develops from **Rathke's pouch**, which is an ectodermal diverticulum of the primitive oral cavity (stomodeum). The diagram in Figure 17.17 shows a midsagittal view of an embryo at week 6 indicating Rathke's pouch and the infundibulum. Remnants of Rathke's pouch may give rise to a craniopharyngioma. A craniopharyngioma is the most common supratentorial tumor occurring in childhood and is the most common cause of hypopituitarism in children. Magnetic resonance imaging (MRI) shows a craniopharyngioma (arrows), which lies suprasellar in the midline, compressing the optic chiasm and hypothalamus.
 - **2. Posterior lobe (neurohypophysis)** develops from the **infundibulum**, which is a neuroecto-dermal ventral evagination of the hypothala-mus.

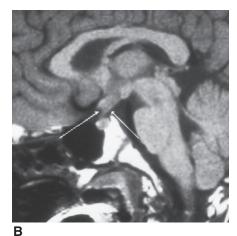


FIGURE 7.17. Hypophysis (pituitary gland).

XIII. DEVELOPMENT OF THE TELENCEPHALON

The telencephalon develops from the prosencephalon. The telencephalon gives rise to the **cerebral hemispheres**, **caudate**, **putamen**, **amygdaloid**, **claustrum**, **lamina terminalis**, **olfactory bulbs**, and **hippocampus**.

A. Cerebral hemispheres (Figure 7.18) develop as bilateral evaginations of the lateral walls of the prosencephalic vesicle and contain the cerebral cortex, cerebral white matter, basal ganglia, and lateral ventricles. The cerebral hemispheres are interconnected by three commissures: the corpus callosum, anterior commissure, and hippocampal (fornical) commissure. Continuous hemispheric growth gives rise to frontal, parietal, occipital, and temporal lobes, which overlie the insula and dorsal brain stem. The diagram in Figure 7.18 shows the development of the cerebral cortex at month 6, month 8, and term. Note the change in the cerebral cortex from a smooth surface or lissencephalic structure to a convoluted surface or gyrencephalic structure. As growth proceeds, a complex pattern of sulci (grooves) and gyri (elevations) develops.

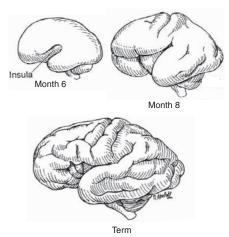
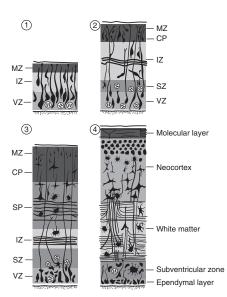


FIGURE 7.18. Development of the cerebral cortex.

B. Cerebral cortex (pallium; Figure 7.19)


- **1.** Like the rest of the neural tube, the wall of the telencephalon consists of neuroectoderm arranged in the ventricular zone, intermediate zone, and marginal zone.
- **2.** Neuroblasts from the ventricular zone and the intermediate zone migrate peripherally to form a transient layer called the **cortical plate**.
- **3.** Neuroblasts in the ventricular zone undergo a wave of proliferation to form the **subventricular zone**.
- **4**. Neuroblasts from the subventricular zone migrate peripherally to form the **subplate zone**.
- **5.** The cortical plate and subplate zone together form the **cerebral neocortex**.
- **6.** The intermediate zone becomes devoid of neuroblasts and develops into the **white matter** of the cerebral hemispheres.
- 7. The marginal zone develops into the **molecu**lar layer of the cerebral cortex.
- 8. The cerebral cortex is classified as the **neocor***tex* and **allocortex**.
 - a. Neocortex (isocortex) is a six-layered cortex that represents 90% of the cortical mantle.
 - **b. Allocortex** is a three-layered cortex that represents 10% of the cortical mantle. The allocortex is subdivided into the **archicortex** (which includes the hippocampal formation) and the **paleocortex** (which includes the olfactory cortex).
- **9.** The diagram in Figure 7.19 shows the temporal sequence (early to late: 1–4, respectively) of cytodifferentiation of the cerebral cortex.

D. Corpus striatum (striatal eminence)

- **1.** The corpus striatum appears in week 5 of development in the floor of the telencephalic vesicle.
- 2. The corpus striatum gives rise to the basal ganglia: the **caudate nucleus**, **putamen**, **amyg-daloid nucleus**, and **claustrum**.
- **3.** The corpus striatum is divided into the caudate nucleus and the lentiform nucleus by corticofugal and corticopetal fibers (which make up the internal capsule).
- **4.** The neurons of the globus pallidus (also a basal ganglion) have their origin in the subthalamus, and these neurons migrate into the telencephalic white matter and become the medial segments of the lentiform nucleus.

E. Commissures are fiber bundles that interconnect the two cerebral hemispheres and cross the midline via the embryonic lamina terminalis (commissural plate).

- **1. Anterior commissure** is the first commissure to appear and interconnects the olfactory structures and the middle and inferior temporal gyri.
- **2. Hippocampal (fornical) commissure** is the second commissure to appear and interconnects the two hippocampi.
- **3. Corpus callosum** is the third commissure to appear (between weeks 12 and 22). The corpus callosum is the largest commissure of the brain and interconnects homologous neocortical areas of the two cerebral hemispheres. The corpus callosum does not project

FIGURE 7.19. Cerebral cortex (pallium). MZ = marginal zone; IZ = intermediate zone; VZ = ventricular zone; CP = cortical plate; SP = subplate zone; SZ = subventricular zone.

84 BRS Embryology

commissural fibers from the visual cortex (area 17) or the hand area of the motor or sensory strips (areas 4 and 3, 1, 2).

XIV. DEVELOPMENT OF THE SYMPATHETIC NERVOUS SYSTEM

The **sympathetic nervous system** originates from the basal plate of the neural tube and neural crest cells.

- **A**. The **basal plate** of the neural tube gives rise to **preganglionic sympathetic neurons** within the intermediolateral **cell column** of the spinal cord, which form white communicating rami found between T1 and L3.
- **B.** The neural crest cells give rise to postganglionic sympathetic neurons within the sympathetic chain ganglia, prevertebral sympathetic ganglia (e.g., celiac ganglia), and chromaffin cells of adrenal medulla.

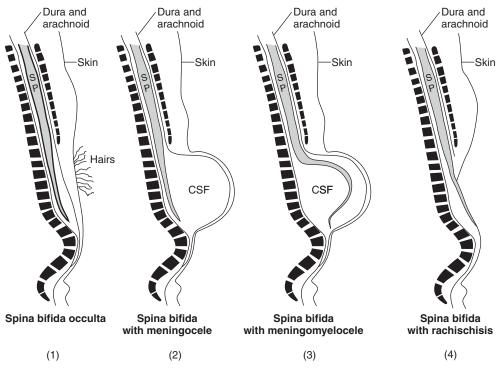
XV. DEVELOPMENT OF THE PARASYMPATHETIC NERVOUS SYSTEM

The **parasympathetic nervous system** originates from the basal plate of the neural tube and neural crest cells.

- A. The basal plate of the neural tube gives rise to preganglionic parasympathetic neurons within the nuclei of the midbrain (CN III), pons (CNVII), medulla (CN IX, X), and spinal cord at S2–S4.
- **B.** The neural crest cells give rise to postganglionic parasympathetic neurons within the ciliary ganglion (CN III), pterygopalatine ganglion (CN VII), submandibular ganglion (CN VII), otic ganglion (CN IX), enteric ganglia of the gut (Meissner and Auerbach; CN X), and abdominal/pelvic cavity parasympathetic ganglia.

XVI. DEVELOPMENT OF THE CRANIAL NERVES

- **A. Olfactory nerve (CN I)** is derived from the **nasal (olfactory) placode** and mediates smell (olfaction). CN I is capable of regeneration.
- **B. Optic nerve (CN II)** is derived from the **ganglion cells of the retina** (which is a diverticulum of the diencephalon) and mediates vision. CN II is not capable of regeneration after transection. CN II is not a true cranial nerve, but a tract of the diencephalon.
- **C. Oculomotor nerve (CN III)** is derived from the **basal plate of the rostral midbrain** and mediates eye movements by innervation of the medial rectus muscle, superior rectus muscle, inferior rectus muscle, and inferior oblique muscle, upper eyelid movement by innervation of the levator palpebrae muscle, pupillary constriction by innervation of sphincter pupillae muscle of the iris, and accommodation by innervation of the ciliary muscle.


- **D.** Trochlear nerve (CN IV) is derived from the basal plate of the caudal midbrain and mediates eye movements by innervation of the superior oblique muscle.
- **E.** Trigeminal nerve (CN V). The motor division of CN V is derived from the basal plate of the rostral pons. The sensory division of CN V is derived from the cranial neural crest cells. CN V mediates the sensory and motor innervation of pharyngeal arch 1 derivatives.
- F. Abducent nerve (CN VI) is derived from the basal plate of the caudal pons and mediates eye movements by innervation of the lateral rectus muscle.
- **G.** Facial nerve (CN VII). The motor division of CN VII is derived from the basal plate of the pons. The sensory division of CN VII is derived from the cranial neural crest cells. CN VII mediates the sensory and motor innervation of pharyngeal arch 2 derivatives.
- **H. Vestibulocochlear nerve (CN VIII)** is derived from the **otic placode**. The vestibular division of CN VIII mediates balance and equilibrium. The cochlear division of CN VIII mediates hearing.
- Glossopharyngeal nerve (CN IX). The motor division of CN IX is derived from the basal plate of the medulla. The sensory division of CN IX is derived from the cranial neural crest cells. CN IX mediates the sensory and motor innervation of pharyngeal arch 3 derivatives.
- J. Vagal nerve (CN X). The motor division of CN X is derived from the basal plate of the medulla. The sensory division of CN X is derived from the cranial neural crest cells. CN X mediates the sensory and motor innervation of pharyngeal arches 4 and 6 derivatives.
- K. Accessory nerve (CN XI) is derived from the basal plate of the spinal segments C1–C6. CN XI innervates the sternocleidomastoid and trapezius muscles.
- L. Hypoglossal nerve (CN XII) is derived from the basal plate of the medulla. CN XIII innervates the intrinsic and extrinsic muscles of the tongue.

XVII. DEVELOPMENT OF THE CHOROID PLEXUS

The choroid plexus develops from the **roof plates of the rhombencephalon and diencephalon** and within the **choroid fissure of the telencephalon**. The choroid plexus consists of **choroid plexus cells** (i.e., modified ependymocytes) and a vascular pia mater (tela choroidea). The choroid plexus produces 500 mL of cerebrospinal fluid (CSF) per day. The CSF is returned to the venous system via the **arachnoid (granulations) villi** of the venous dural sinuses (e.g., superior sagittal sinus).

XVIII. CONGENITAL MALFORMATIONS OF THE CENTRAL NERVOUS SYSTEM

A. Variations of spina bifida (Figure 7.20). Spina bifida occurs when the **bony vertebral arches** fail to form properly, thereby creating a vertebral defect, usually in the **lumbosacral region**.

FIGURE 7.20. Schematic drawings illustrating the various types of spina bifida. SP = spinal cord; CSF = cerebrospinal fluid.

1. Spina bifida occulta (Figure 7.21) is evidenced by a tuft of hair in the lumbosacral region. It is the least severe variation and occurs in 10% of the population. In Figure 7.21, MRI of spina bifida occulta shows the presence of the bony vertebral bodies (VB) along the entire length of the vertebral column. However, the bony spinous processes terminate much higher (asterisk) because the vertebral arches fail to form properly. This creates a bony vertebral defect. The spinal cord is intact.

FIGURE 7.21. Spina bifida occulta.

Chapter 7 Nervous System

- 2. Spina bifida with meningocele (Figure 7.22) occurs when the meninges protrude through a vertebral defect and form a sac filled with CSF. The spinal cord remains in its normal position. The sonogram in Figure 7.22 of spina bifida with meningomyelocele shows the spinal cord (*arrows*), cerebrospinal fluid (CSF)–filled sac, a small subcutaneous lipoma (L), and the filum terminale (*arrowhead*).
- **3. Spina bifida with meningomyelocele** occurs when the meninges and spinal cord protrude through a vertebral defect and form a sac filled with CSF.

FIGURE 7.22. Spina bifida with meningomyelocele.

4. Spina bifida with rachischisis (Figure 7.23) occurs when the posterior neuropore of the neural tube fails to close during week 4 of development. This condition is the most severe type of spina bifida, causing paralysis from the level of the defect caudally. This variation presents clinically as an **open neural tube** that lies on the surface of the back. This condition also falls into a classification called neural tube defects (NTDs). Lower NTDs (i.e., spina bifida with rachischisis) result from a failure of the posterior neuropore to close during week 4 of development and usually occur in the lumbosacral region. Upper NTDs (e.g., anencephaly) result from a failure of the anterior neuropore to close during week 4 of development. NTDs can be diagnosed prenatally by detecting elevated levels of α -fetoprotein in the amniotic fluid. About 75% of all NTDs can be prevented if all women capable of becoming pregnant consume **folic acid** (dose: 0.4 mg of folic acid per day). The photograph in Figure 7.23 of spina bifida with rachischisis shows a newborn infant with an open neural tube on the back.

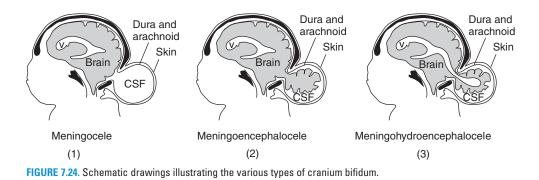
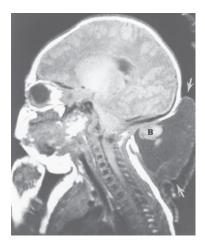


FIGURE 7.23. Spina bifida with rachischisis.


BRS Embryology

88

B. Variations of cranium bifida (Figure 7.24). Cranium bifida occurs when the bony skull fails to form properly, thereby creating a skull defect, usually in the occipital region.

- **1. Cranium bifida with meningocele (Figure 7.25)** occurs when the meninges protrude through the skull defect and form a sac filled with CSF. The photograph in Figure 7.25 shows a fetus with an occipital meningocele (*).
- FIGURE 7.25. Fetus with an occipital encephalocele.
- **2. Cranium bifida with meningoencephalocele** (Figure 7.26) occurs when the meninges and brain protrude through the skull defect and form a sac filled with CSF. This defect usually comes to medical attention within the infant's first few days or weeks of life. The outcome is poor (75% of the infants die or have severe retardation). The MRI of a meningoencephalocele in Figure 7.26 demonstrates a large protrusion (*arrows*) extending through an occipital bone defect, which contains brain tissue (B).
- **3. Cranium bifida with meningohydroencephalocele** occurs when the meninges, brain, and a portion of the ventricle protrude through the skull defect.

FIGURE 7.26. Magnetic resonance imaging of a meningoencephalocele.

- C. Anencephaly (meroanencephaly; Figure 7.27) is a type of **upper NTD** that occurs when the **anterior** neuropore fails to close during week 4 of development. This results in failure of the brain to develop (however, a rudimentary brain is present), failure of the lamina terminalis to form, and failure of the bony cranial vault to form. Anencephaly is incompatible with extrauterine life. If not stillborn, infants with an encephaly survive from only a few hours to a few weeks. Anencephaly is the common serious birth defect seen in stillborn fetuses. Anencephaly is easily diagnosed by ultrasound, and a therapeutic abortion is usually performed at the mother's request. The photograph in Figure 7.27 shows a newborn infant with anencephaly.
- **D.** Arnold-Chiari malformation (Figure 7.28) occurs when the caudal vermis and tonsils of the cerebellum and the medulla oblongata herniate through the foramen magnum. Clinical signs are caused by compression of the medulla oblongata and stretching of CN IX, CN X, and CN XII and include spastic dysphonia, difficulty in swallowing, laryngeal stridor (vibrating sound heard during respiration as a result of obstructed airways), diminished gag reflex, apnea, and vocal cord paralysis.

This malformation is commonly associated with a **lumbar meningomyelocele**, **platybasia** (bone malformation of base of skull) along with malformation of the occipitovertebral joint, and obstructive **hydrocephalus** (due to obliteration of the foramen of Magendie and foramina of Luschka of the fourth ventricle; however, about 50% of cases demonstrate **aqueductal stenosis**.) The MRI in Figure 7.28 shows the Arnold-Chiari malformation. Note the herniation of the brain stem and cerebellum (*arrows*) through foramen magnum. Note the presence of a syrinx (S) in the cervical spinal cord.

E. Hydrocephalus is a dilation of the ventricles due to an excess of CSF that may result from either a blockage of CSF circulation or, rarely, an overproduction of CSF (e.g., due to a choroid plexus papilloma). There are two general categories of hydrocephalus:

FIGURE 7.27. Newborn infant with anencephaly.

FIGURE 7.28. Magnetic resonance imaging of the Arnold-Chiari malformation.

- **1. Communicating (or nonobstructive) hydrocephalus (Figure 7.29).** In this type of hydrocephalus, there is free communication between the ventricles and the subarachnoid space. The blockage of CSF in this type of hydrocephalus is usually in the subarachnoid space or arachnoid granulations and results in the enlargement of all the ventricular cavities as well as the subarachnoid space. The sonogram in Figure 7.29 shows the dilated lateral ventricle (L) communicating through a dilated foramen of Monro with a dilated third ventricle (3) and dilated fourth ventricle (4). The cisterna magna (C) is also shown.
- 2. Noncommunicating (or obstructive) hydrocephalus. In this type of hydrocephalus, there is a lack of communication between the ventricles and the subarachnoid space. The blockage of CSF in this type of hydrocephalus is in the foramen of Monro, the cerebral aqueduct, or the foramen of Magendie/foramina of Luschka and results in the enlargement of only those ventricular cavities proximal to the blockage. There are two types of congenital hydrocephalus, both of which produce a noncommunicating (obstructive) hydrocephalus:
 - a. Congenital aqueductal stenosis (Figure 7.30) is the most common cause of congenital hydrocephalus. This type may be transmitted by an X-linked trait, or it may be caused by cytomegalovirus or toxoplasmosis. The sonogram in Figure 7.30 shows dilated lateral ventricles (L), dilated third ventricle (3), but normal-size fourth ventricle (4). Therefore, obstruction at the cerebral aqueduct is presumed.
 - b. Dandy-Walker syndrome (Figure 7.31) appears to be associated with atresia of the foramen of Magendie and foramina of Luschka (although it remains controversial). This syndrome is usually associated with dilation of the fourth ventricle, posterior fossa cyst, agenesis of the cerebellar vermis, small cerebellar hemispheres, occipital meningocele, and, frequently, agenesis of the splenium of the corpus callosum. The MRI in Figure 7.31 shows a dilated fourth ventricle (4) communicating with a posterior fossa cyst (CY) along with small cerebellar hemispheres.

FIGURE 7.29. Communicating (or nonobstructive) hydrocephalus.

FIGURE 7.30. Congenital aqueductal stenosis.

FIGURE 7.31. Dandy-Walker syndrome.

- F. Porencephaly (encephaloclastic porencephaly; Figure 7.32) is the presence of one or more fluidfilled cystic cavities within the brain that may communicate with the ventricles but do not extend to the cerebral cortical surface. The cysts are lined by ependyma and have smooth or irregular walls. These cysts form as a result of brain destruction early in gestation before the brain is capable of a glial response to form a scar. The sonogram in Figure 7.32 shows a fluid-filled cystic cavity (asterisk) communicating with the right lateral ventricle (Ch denotes the choroid plexus).
- **G.** Hydranencephaly (Figure 7.33) is the presence of a huge, fluid-filled cystic cavity that completely replaces the cerebral hemispheres. The cyst is lined by glial and meningeal elements. This cystic cavity forms as a result of occlusion of the internal carotid arteries in utero, causing widespread destruction of the cerebral cortex (the brain stem and cerebellum are usually spared because verte-brobasilar circulation is not affected). Other causes include toxoplasmosis, rubella, cytomegalovirus, and herpes virus. The MRI in Figure 7.33 shows a huge, fluid-filled cystic cavity within the supratentorial compartment (asterisk) that replaces the cerebral hemispheres. Note that the brain stem and cerebellum remain intact.
- **H. Schizencephaly (Figure 7.34)** is the presence of a cerebral cortical cleft of brain tissue that extends from the ventricles to the cerebral cortical surface. The cleft is lined by cortical brain tissue and is fluid filled (i.e., a fluid-filled cleft). The cleft forms as a result of abnormal neuronal migration during embryological formation of the brain. The MRI in Figure 7.34 shows a cleft of brain tissue in the left cerebral hemisphere (*arrows*). This cleft is fluid filled and communicates with the lateral ventricles.
- 1. Holoprosencephaly (arhinencephaly; Figure 7.35) occurs when the prosencephalon fails to cleave down the midline such that the telencephalon contains a single ventricle. It is characterized by the absence of olfactory bulbs and tracts (arhinencephaly) and is often seen in trisomy 13 (Patau syndrome), trisomy 18 (Edward syndrome), short arm deletion of chromosome 18, and Meckel syndrome. Because the fetal face develops at the same time as the brain, facial anomalies (e.g., cyclopia, cleft lip, cleft palate) are commonly seen with holoprosencephaly. Holoprosencephaly is the most severe manifestation of fetal alcohol syndrome

FIGURE 7.32. Porencephaly.

FIGURE 7.33. Hydranencephaly.

FIGURE 7.34. Schizencephaly.

FIGURE 7.35. Holoprosencephaly (arhinencephaly).

resulting from alcohol abuse during pregnancy (especially in the first 4 weeks of pregnancy). The sonogram in Figure 7.35 shows a single, horseshoeshaped ventricle (V) and fused thalami (T) typical of holoprosencephaly. There are three types of holoprosencephaly:

- 1. Alobar prosencephaly (most severe form) occurs when there is complete absence of cleavage of the prosencephalon. These infants are stillborn or die shortly after birth and have cyclopia, single rudimentary proboscis, cleft lip, cleft palate, hypotelorism, and micrognathia. Sonographic findings include a single, horseshoe-shaped ventricle (monoventricle), fused thalami, and a pancake-like mantle of undifferentiated cerebral cortical tissue.
- **2. Semilobar prosencephaly** (intermediate form) occurs when there is absence of cleavage of the prosencephalon anteriorly but partial cleavage of the prosencephalon posteriorly.
- **3. Lobar prosencephaly** (least severe form) occurs when there is absence of cleavage of the prosencephalon anteriorly but cleavage of the prosencephalon posteriorly.
- J. Tethered spinal cord (filum terminale syndrome; Figure 7.36) occurs when a thick, short filum terminale forms. The result is weakness and sensory deficits in the lower extremity and a neurogenic bladder. Tethered spinal cord is frequently associated with lipomatous tumors or meningomyeloceles. Deficits usually improve after transection. The MRI in Figure 7.36 shows a low-positioned spinal cord (*arrows*) attached to an intraspinal lipoma (L) typical of a tethered spinal cord.
- K. Chordoma is a tumor that arises from remnants of the notochord.

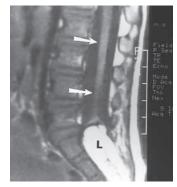


FIGURE 7.36. Tethered spinal cord.

92

Study Questions for Chapter 7

1. Which one of following basal ganglia is derived from the diencephalon?

- (A) Amygdaloid nucleus
- (B) Head of the caudate nucleus
- (C) Tail of the caudate nucleus
- (D) Globus pallidus
- (E) Putamen

2. When are the axons of the corticospinal tracts fully myelinated?

- (A) In the late embryonic period
- (**B**) In the mid-fetal period
- (C) At birth
- (D) By the end of the first postnatal year
- (E) By the end of the second postnatal year

3. Which of the following represents the general somatic efferent (GSE) column of the pons?

- (A) Abducent nucleus
- (B) Nucleus ambiguus
- (C) Hypoglossal nucleus
- (D) Inferior olivary nucleus
- (E) Inferior salivatory nucleus

4. Which of the following represents the general visceral efferent (GVE) column of the pons?

- (A) The cerebellum
- (B) The spinal trigeminal nucleus
- (C) The principal trigeminal nucleus
- **(D)** The superior salivatory nucleus
- (E) The pontine nuclei

5. The external germinal layer of the cerebellum gives rise to which of the following?

- (A) Outer stellate cells
- (B) Purkinje cells
- (C) Granule cells
- (D) Basket cells
- (E) Giant cells of Betz

6. Which of the following statements best describes the pathogenesis of hydranencephaly?

- (A) Results from failure of midline cleavage of the embryonic forebrain
- **(B)** Results from atresia of the outlet foramina of the fourth ventricle
- (C) Results from blockage of the cerebral aqueduct
- **(D)** Results from internal carotid artery occlusion
- (E) Results from failure of the anterior neuropore to close

7. The anterior and posterior neuropores close during which week of embryonic development?

- (A) Week 2
- (B) Week 3
- (C) Week 4
- (D) Week 5
- (E) Week 6

8. At birth the conus medullaris is found at which vertebral level?

- (A) T12
- **(B)** L1
- (**C**) L3
- (D) S1
- **(E)** S4

9. Which of the following structures is derived from the telencephalon?

- (A) Pineal gland
- (B) Hypothalamus
- (C) Hippocampus
- (D) Optic nerve (CN II)
- (E) Globus pallidus

10. Which of the following conditions results from failure of the anterior neuropore to close?

- (A) Hydrocephalus
- (B) Anencephaly
- (C) Mongolism
- (D) Craniosynostosis
- (E) Meningoencephalocele

11. Which of the following structures is derived from the diencephalon?

- (A) Caudate nucleus
- (B) Cerebellum
- (C) Olfactory bulbs
- (D) Neurohypophysis
- (E) Adenohypophysis

12. Caudal herniation of the cerebellar tonsils and medulla through the foramen magnum is called

- (A) Dandy-Walker syndrome
- (B) Down syndrome
- (C) Arnold-Chiari syndrome
- (D) cranium bifidum
- (E) myeloschisis

13. The flexure that develops between the metencephalon and the myelencephalon is called the

- (A) cephalic flexure
- (B) mesencephalic flexure
- (C) pontine flexure
- (D) cerebellar flexure
- (E) cervical flexure

14. Which of the following statements best describes the sulcus limitans?

- (A) It is found in the interpeduncular fossa
- (B) It is located between the alar and basal plates
- (C) It separates the medulla from the pons
- **(D)** It separates the hypothalamus from the thalamus
- (E) It separates the neocortex from the allocortex

15. Myelinated preganglionic sympathetic neurons have their cell bodies in

- (A) Clarke's column
- (B) substantia gelatinosa
- (C) intermediolateral cell column
- (D) intermediomedial cell column

16. The choroid plexus of the fourth ventricle is derived from the

- (A) alar plate
- (B) basal plate
- (C) floor plate
- (D) rhombic lip
- (E) roof plate

- **17.** Tanycytes are found principally in the
- (A) area postrema
- (B) cerebral aqueduct
- (C) lateral ventricles
- **(D)** third ventricle
- (E) fourth ventricle

18. Which of the following most accurately describes the herniation of meninges and brain tissue through a defect in occipital bone?

- (A) Cranium bifidum with meningoencephalocele
- (B) Cranium bifidum with meningohydroencephalocele
- (C) Cranium bifidum with meningocele
- (D) Arnold-Chiari syndrome
- (E) Dandy-Walker syndrome

19. Which of the following is the most

common cause of congenital hydrocephalus?

- (A) Cranium bifidum with meningoencephalocele
- (B) Cranium bifidum with meningohydroencephalocele
- (C) Aqueductal stenosis
- (D) Arnold-Chiari syndrome
- (E) Dandy-Walker syndrome

20. Which of the following is associated with atresia of the foramen of Magendie and foramina of Luschka?

- (A) Cranium bifidum with meningoencephalocele
- (B) Cranium bifidum with meningohydroencephalocele
- (C) Aqueductal stenosis
- (D) Arnold-Chiari syndrome
- (E) Dandy-Walker syndrome

21. Which of the following is associated with platybasia and malformation of the occipitovertebral joint?

- (A) Cranium bifidum with meningoencephalocele
- (B) Cranium bifidum with meningohydroencephalocele
- (C) Aqueductal stenosis
- (D) Arnold-Chiari syndrome
- (E) Dandy-Walker syndrome

22. A 22-year-old pregnant woman at 20 weeks of gestation comes to her ON/GYN for a normal examination. During routine blood tests, her serum α -fetoprotein (AFP) concentration is markedly increased for her gestational age. Ultrasonography reveals spina bifida in the fetus. At what week of gestation did this defect most likely occur?

- **(A)** 1–2
- **(B)** 4–6
- **(C)** 9–11
- **(D)** 12–15
- **(E)** 16–19

23. Which structure is derived from the cranial neural crest cells?

(A) Lens of the eye

- (**B**) Pia mater
- (C) Dura mater
- (**D**) Pineal gland
- (E) Olfactory placode, CN I

Answers and Explanations

- **1. D.** The globus pallidus has its origin from the diencephalon. Neuroblasts from the subthalamus migrate into the telencephalic white matter to form the globus pallidus.
- **2.** E. Axons of the corticospinal tracts are fully myelinated by the end of the second postnatal year; Babinski's sign (extensor plantar reflex) is usually not elicitable before myelination of the corticospinal tracts.
- **3. A.** The abducent nucleus represents the general somatic efferent (GSE) column of the pons.
- **4. D.** The superior salivatory nucleus represents the general visceral efferent (GVE) column of the pons. All somatic and visceral motor nuclei are derived from the basal plate. The cerebellum and pontine nuclei and the sensory nuclei of cranial nerves are derivatives of the alar plate.
- **5. C.** New evidence documents that the external granular layer gives rise only to the granule cells of the internal granular layer and not to the basket (inner stellate) or stellate (outer stellate) neurons, as was long thought. The giant cells of Betz are found in the cerebral cortex.
- **6**. **D**. Hydranencephaly consists of huge intracerebral cavitation resulting from infarction in the territory of the internal carotid artery.
- **7. C.** The anterior and posterior neuropores close during week 4 of development—the anterior on day 25, the posterior on day 27. Failure of the anterior neuropore to close results in anencephaly; failure of the posterior neuropore to close results in myeloschisis.
- **8. C.** At birth, the conus medullaris extends to L3, and in the adult it extends to the L1–L2 interspace. At 8 weeks, the spinal cord extends the entire length of the vertebral canal.
- **9. C.** The hippocampus develops from the telencephalon. The pineal gland, hypothalamus, CN II, and the globus pallidus are derived from the diencephalon.
- **10. B.** Failure of the anterior neuropore to close results in anencephaly. The brain fails to develop; no cranial vault is formed.
- **11. D.** The neurohypophysis develops from the diencephalon. The adenohypophysis (pars distalis, pars tuberalis, and pars intermedia) develops from Rathke's pouch, an ectodermal diverticulum of the stomodeum. The caudate nucleus and olfactory bulbs develop from the telencephalon. The cerebellum develops from the metencephalon.
- **12. C.** Arnold-Chiari syndrome is a cerebellomedullary malformation in which the caudal vermis and medulla herniate through the foramen magnum, resulting in communicating hydrocephalus. Arnold-Chiari syndrome is frequently associated with spina bifida.
- **13. C.** The pontine flexure develops between the metencephalon (pons) and the myelencephalon (medulla). The pontine flexure results in lateral expansion of the walls of the metencephalon and myelencephalon, stretching of the roof of the fourth ventricle, and widening of the floor of the fourth ventricle (rhomboid fossa).
- **14. B.** The sulcus limitans separates the sensory alar from the motor basal plates. It is found in the developing spinal cord and on the surface of the adult rhomboid fossa of the fourth ventricle. The bulbopontine sulcus (inferior pontine sulcus) separates the medulla from the pons. The hypothalamic sulcus separates the thalamus from the hypothalamus. The rhinal sulcus separates the neocortex from the allocortex.

- **15. C.** Myelinated preganglionic sympathetic neurons have their cell bodies in the intermediolateral cell column of the lateral horn; this cell column extends from C8 to L1. Myelinated preganglionic parasympathetic neurons have their cell bodies in the sacral autonomic nucleus, from S2 to S4.
- **16. E.** The roof plate and its pial covering give rise to the choroid plexus, which invaginates into the fourth ventricle. The alar plate gives rise to sensory neurons; the basal plate gives rise to motor neurons; the floor plate contains decussating fibers; the rhombic lips give rise to the cerebellum.
- **17. D.** Tanycytes are modified ependymal cells, found principally in the third ventricle. Tanycytes transport substances from the CSF to the hypophyseal portal system.
- **18. A.** Cranium bifidum with meningoencephalocele consists of the herniation of meninges and brain tissue through a defect in occipital bone.
- 19. C. The most common cause of congenital hydrocephalus is aqueductal stenosis.
- **20. E.** Dandy-Walker syndrome is congenital hydrocephalus associated with atresia of the outlet foramina of Magendie and Luschka. It is associated with agenesis of the cerebellar vermis and agenesis of the splenium of the corpus callosum.
- **21. D.** Arnold-Chiari syndrome, a common congenital malformation, is frequently associated with platybasia and malformation of the occipitovertebral joint; other anomalies frequently seen are beaking of the tectum, aqueductal stenosis, kinking and herniation of the medulla, and herniation of the cerebellar vermis through the foramen magnum. Meningomyelocele (spina bifida) is a common component of the syndrome.
- **22. B.** The posterior neuropore closes during week 4 (day 27). Failure of the posterior neuropore to close results in lower neural tube defects, such as spina bifida.
- **23. B.** The pia mater is the only listed structure that is derived from cranial neural crest cells. For a summary of germ cell derivatives refer to Table 4.1.

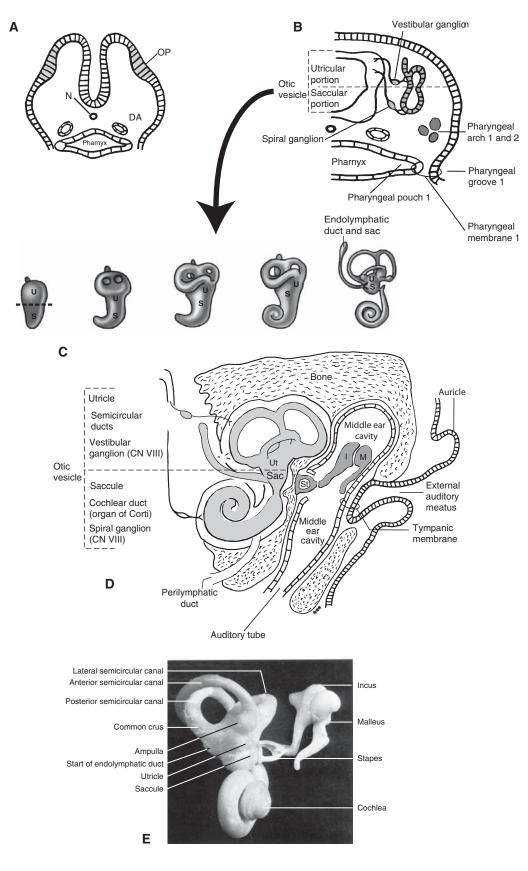
Ear

I. OVERVIEW

The ear is the organ of **balance** and **hearing**. It consists of an **internal**, a **middle**, and an **external ear**.

II. THE INTERNAL EAR (FIGURE 8.1; TABLE 8.1)

The internal ear develops in week 4 from a thickening of the surface **ectoderm** called the **otic placode**. The otic placode invaginates into the connective tissue (mesenchyme) adjacent to the rhombencephalon and becomes the **otic vesicle**. The otic vesicle divides into **utricular** and **saccular portions**.


A. Utricular portion of the otic vesicle gives rise to the following:

- **1. Utricle** contains the sensory hair cells and otoliths of the macula utriculi. The utricle responds to **linear acceleration** and the **force of gravity**.
- **2. Semicircular ducts** contain the sensory hair cells of the cristae ampullares. They respond to **angular acceleration**.
- 3. Vestibular ganglion of cranial nerve (CN) VIII lies at the base of the internal auditory meatus.
- **4. Endolymphatic duct and sac** is a membranous duct that connects the saccule to the utricle and terminates in a blind sac beneath the dura. The endolymphatic sac absorbs endolymph.
- B. Saccular portion of the otic vesicle gives rise to the following:
 - **1. Saccule** contains the sensory hair cells and otoliths of the macula sacculi. The saccule responds to **linear acceleration** and the **force of gravity**.
 - **2. Cochlear duct (organ of Corti)** is involved in hearing. This duct has pitch (tonopic) localization whereby high-frequency sound waves (20,000 Hz) are detected at the base and low-frequency sound waves (20 Hz) are detected at the apex.
 - **3.** Spiral ganglion of CN VIII lies in the modiolus of the bony labyrinth.

III. THE MEMBRANOUS AND BONY LABYRINTHS

- **A.** The membranous labyrinth consists of all the structures derived from the otic vesicle (see Table 8.1).
- **B.** The membranous labyrinth is initially surrounded by neural crest cells that form a connective tissue (mesenchyme) covering. This connective tissue becomes cartilaginous and then ossifies to become the **bony labyrinth** of the temporal bone.
- **C.** The connective tissue closest to the membranous labyrinth degenerates, thus forming the **perilymphatic space** containing **perilymph**.

Chapter 8 Ear

99

- **D**. This sets up the interesting anatomical relationship by which the membranous labyrinth is suspended (or floats) within the bony labyrinth by perilymph.
- E. Perilymph, which is similar in composition to **cerebrospinal fluid**, communicates with the subarachnoid space via the **perilymphatic duct**.

IV. MIDDLE EAR (FIGURE 8.1; TABLE 8.1)

A. Ossicles of the middle ear

- **1. Malleus** develops from cartilage of **pharyngeal arch 1** (Meckel's cartilage) and is attached to the tympanic membrane. The malleus is moved by the **tensor tympani muscle**, which is innervated by CN V₃.
- **2. Incus** develops from the cartilage of **pharyngeal arch 1** (Meckel's cartilage). The incus articulates with the malleus and stapes.
- **3. Stapes** develops from the cartilage of **pharyngeal arch 2** (Reichert's cartilage). The stapes is moved by the **stapedius** muscle, which is innervated by CN VII. It is attached to the oval window of the vestibule.
- B. Auditory tube and middle ear cavity both develop from pharyngeal pouch 1.
- **C.** Tympanic membrane develops from pharyngeal membrane 1. This membrane separates the middle ear from the external auditory meatus of the external ear. It is innervated by CNV_3 and CNIX.

V. EXTERNAL EAR (FIGURE 8.2; TABLE 8.1)

- A. External auditory meatus develops from the pharyngeal groove 1. The meatus becomes filled with ectodermal cells, forming a temporary meatal plug that disappears before birth. The meatus is innervated by CN V₃ and CN IX.
- B. Auricle (or pinna) develops from six auricular hillocks that surround pharyngeal groove 1. The auricle is innervated by CN V₃, CN VII, CN IX, and CN X and cervical nerves C₂ and C₃. The diagram in Figure 8.2 shows all the structures of the adult external ear.

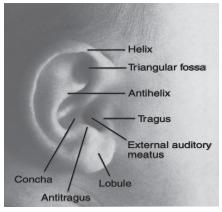


FIGURE 8.2. Nomenclature of the adult auricle.

FIGURE 8.1. Schematic transverse sections showing the formation of the otic placode and otic vesicle from the surface ectoderm. (A) The otic placode is distinguished by a thickening of the surface ectoderm. DA = dorsal aorta; N = noto-chord; OP = otic placode. (B) The otic placode invaginates into the underlying connective tissue (mesenchyme) and becomes the otic vesicle. (C) The otic vesicle undergoes extensive changes to form the adult membranous labyrinth. U = utricle; S = saccule. (D) The adult ear. M = malleus; I = incus; St = stapes. (E) The adult auditory ossicles in connection with the membranous labyrinth (or internal ear).

table 8.1	Embryonic Ear Structures and Their Adult Derivatives
Embryonic Structure	Adult Derivative
	Internal ear
Otic vesicle	
Utricular portion	Utricle, semicircular ducts, vestibular ganglion of CN VIII, endolymphatic duct and sac
Saccular portion	Saccule, cochlear duct (organ of Corti), spiral ganglion of CN VIII
	Middle ear
Pharyngeal arch 1	Malleus, incus, tensor tympani muscle
Pharyngeal arch 2	Stapes, stapedius muscle
Pharyngeal pouch 1	Auditory tube, middle ear cavity
Pharyngeal membrane 1	Tympanic membrane
	External ear
Pharyngeal groove 1	External auditory meatus
Auricular hillocks	Auricle

VI. CONGENITAL MALFORMATIONS OF THE EAR

A. Minor auricular malformations (Figure 8.3) are commonly found and raise only cosmetic issues. However, auricular malformations are seen in Down syndrome (trisomy 21), Patau syndrome (trisomy 13), and Edwards syndrome (trisomy 18). The photograph in Figure 8.3 shows a minor auricular variation with a partially folded helix and a prominent antihelix (*arrow*).



FIGURE 8.3. Minor auricular variation: partially folded helix.

B. Low-set slanted auricles (Figure 8.4) are auricles that are located below a line extended from the corner of the eye to the occiput. This condition may indicate chromosomal abnormalities as indicated earlier. The photograph in Figure 8.4 shows a severely low-set and posteriorly rotated auricle in an infant with Stickler syndrome. Stickler syndrome is a type of skeletal dysplasia caused by a mutation either in the *COL2A1* gene on chromosome 12q12-13.2 for collagen a-1(II) chain protein or the *COL11A1* gene on chromosome 1p21 for collagen α-1(XI) chain protein.

FIGURE 8.4. Stickler syndrome.

101

102 BRS Embryology

C. Preauricular sinus (Figure 8.5) is a narrow tube or shallow pit that has a pinpoint external opening that is most often asymptomatic and of minor cosmetic importance, although infections may occur. The embryological basis is uncertain but probably involves pharyngeal groove 1. The photograph in Figure 8.5 shows a preauricular sinus in the pre-tragal area.

FIGURE 8.5. Preauricular sinus.

D. Auricular appendages (Figure 8.6) are skin tags that are commonly found anterior to the auricle (i.e., pre-tragal area) and raise only cosmetic issues. The embryological basis is the formation of accessory auricle hillocks. The photograph in Figure 8.6 shows auricular appendages (i.e., skin tags) in the pre-tragal area (*arrows*).

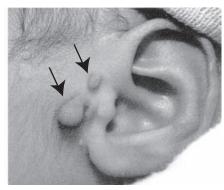


FIGURE 8.6. Auricular appendages.

E. Atresia of the external auditory meatus (Figure 8.7). A complete atresia consists of a bony plate in the location of the tympanic membrane. A partial atresia consists of a soft tissue plug in the location of the tympanic membrane. This results in conduction deafness and is usually associated with the first arch syndrome. The embryological basis is the failure of the meatal plug to canalize. The photograph in Figure 8.7 shows the absence of the external auditory meatus in this infant.

FIGURE 8.7. Atresia of the external auditory meatus.

F. Congenital cholesteatoma (epidermoid cyst; Figure 8.8) is a benign tumor found in the middle ear cavity that results conduction deafness. The embryological basis is the proliferation of endodermal cells lining the middle ear cavity. The light micrograph in Figure 8.8 shows a large epidermoid formation (*arrow*).

FIGURE 8.8. Epidermoid cyst.

- **G. Microtia (Figure 8.9)** is a severely disorganized auricle that is associated with other malformations resulting in deafness. The embryological basis is impaired proliferation or fusion of the auricular hillocks. The photograph in Figure 8.9 shows a severely disorganized auricle (*arrow*).
- **H. Congenital deafness.** The organ of Corti may be damaged by exposure to **rubella virus**, especially during weeks 7 and 8 of development.

FIGURE 8.9. Microtia.

Study Questions for Chapter 8

1. The cochlear duct contains the spiral organ of Corti and is derived from which of the following?

- (A) From both ectoderm and mesoderm
- (B) Neural crest
- (C) Endoderm
- (D) Mesoderm
- (E) Ectoderm

2. The middle ear cavity

- (A) is of mesodermal origin
- (B) develops from pharyngeal pouch 1
- (C) develops from pharyngeal arch 1
- (D) develops from pharyngeal arch 2
- (E) develops from the otic vesicle

3. The otic vesicle

- (A) gives rise to the bony labyrinth
- (B) is found adjacent to the rhombencephalon
- (C) is derived from neuroectoderm
- **(D)** gives rise to the auricle (pinna)
- (E) gives rise to the tympanic membrane

4. The auricle (pinna) of the external ear is innervated by which of the following nerves?

- (A) CN V₃
- (B) CN V₂
- (C) CN XII
- (D) CN III
- (E) CN VIII

5. The stapedius muscle, which moves the stapes ossicle, is innervated by

- (A) CNV_3
- (B) CN XII
- (C) CN III
- (D) CN VII
- (E) cervical nerves C₂ and C₃

6. The utricular portion of the otic vesicle gives rise to the

- (A) ductus reuniens
- (B) cochlear duct
- (C) endolymphatic sac
- (D) scala vestibuli
- (E) scala tympani

7. The saccular portion of the otic vesicle gives rise to the

- (A) organ of Corti
- (B) endolymphatic duct
- (C) superior semicircular canal
- **(D)** crus commune nonampullare
- (E) lateral semicircular canal
- 8. The tubotympanic recess gives rise to
- (A) a conduit that interconnects the middle ear and the nasopharynx
- (B) the external auditory meatus
- (C) the internal auditory meatus
- (D) the facial canal
- (E) a conduit that interconnects the perilymphatic space with the subarachnoid space

9. Perilymph enters the subarachnoid space via the

- (A) cochlear duct
- (B) ductus reuniens
- (C) perilymphatic duct
- (D) vestibular aqueduct
- (E) utriculosaccular duct
- 10. Pharyngeal groove 1 gives rise to the
- (A) internal auditory meatus
- (B) external auditory meatus
- (C) eustachian tube
- (D) cervical sinus
- (E) primary tympanic cavity

Answers and Explanations

- **1. E.** The cochlear duct is derived from a thickening of the surface ectoderm called the otic placode.
- **2. B.** The middle ear cavity develops from pharyngeal pouch 1 as it evaginates to form the tubotympanic recess.
- **3. B.** The otic vesicle arises from an invagination of the surface ectoderm called the otic placode. The otic vesicle is found adjacent to the rhombencephalon.
- **4. A.** The auricle (pinna) of the external ear is innervated by cranial nerves V₃ (mandibular division), VII, IX, and X; cervical nerves C₂ and C₃ also innervate the auricle.
- 5. D. The stapes is innervated by CN VII.
- **6. C.** The utricular region of the otic vesicle gives rise to the endolymphatic sac and duct and semicircular ducts.
- **7. A.** The saccular region of the otic vesicle gives rise to the cochlear duct, which houses the spiral organ of Corti.
- **8. A.** The tubotympanic recess is derived from pharyngeal pouch 1. It gives rise to the tympanic cavity and the auditory (eustachian) tube; the auditory tube interconnects the tympanic cavity with the nasopharynx.
- **9. C.** The perilymph enters the subarachnoid space of the posterior cranial fossa via the cochlear aqueduct, which contains the perilymphatic duct.
- **10. B.** Pharyngeal groove 1 gives rise to the external auditory meatus.

chapter

Eye

9

I. DEVELOPMENT OF THE OPTIC VESICLE (FIGURE 9.1; TABLE 9.1)

- **A**. The development of the optic vesicle begins at day 22 with the formation of **optic sulcus**, which evaginates from the wall of the diencephalon as the **optic vesicle**, consisting of **neuroectoderm**.
- **B**. The optic vesicle invaginates and forms a double-layered **optic cup** and **optic stalk**.
- **C.** *PAX6* is the master homeotic gene in eye development. *PAX6* is expressed predominately in the optic cup and lens placode. *PAX2* is expressed predominately in the optic stalk.
- **D.** The optic cup and its derivatives. The double-layered optic cup consists of an outer pigment layer and an inner neural layer.
 - 1. Retina
 - **a**. The outer pigment layer of the optic cup gives rise to the **pigment layer of the retina**.
 - **b.** The **intraretinal space** separates the outer pigment layer from the inner neural layer. Although the intraretinal space is obliterated in the adult, it remains a weakened area prone to **retinal detachment**.
 - **c.** The inner neural layer of the otic cup gives rise to the **neural layer of the retina** (i.e., the rods and cones, bipolar cells, ganglion cells, etc.).

2. Iris (Figure 9.2)

- **a**. The epithelium of the iris develops from the anterior portions of both the outer pigment layer and inner neural layer of the optic cup, which explains its histological appearance of two layers of columnar epithelium.
- **b.** The stroma develops from mesoderm continuous with the choroid.
- **c.** The iris contains the **dilator pupillae muscle** and **sphincter pupillae muscle**, which are formed from the epithelium of the outer pigment layer by a transformation of these epithelial cells into contractile cells.

3. Ciliary body (Figure 9.2)

- **a**. The epithelium of the ciliary body develops from the anterior portions of both the outer pigment layer and inner neural layer of the optic cup, which explains its histological appearance of two layers of columnar epithelium.
- **b**. The stroma develops from mesoderm continuous with the choroid.
- **c.** The ciliary body contains the **ciliary muscle**, which is formed from mesoderm within the choroid. The **ciliary processes** are components of the ciliary body.
- **d.** The ciliary processes produce **aqueous humor**, which circulates through the posterior and anterior chambers and drains into the venous circulation via the **trabecular meshwork** and the **canal of Schlemm**.
- **e.** The ciliary processes give rise to the **suspensory fibers** of the lens (ciliary zonule), which are attached to and suspend the lens.

107

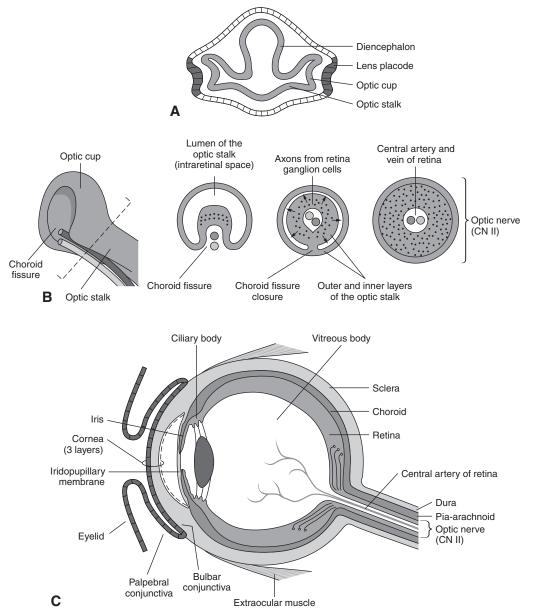
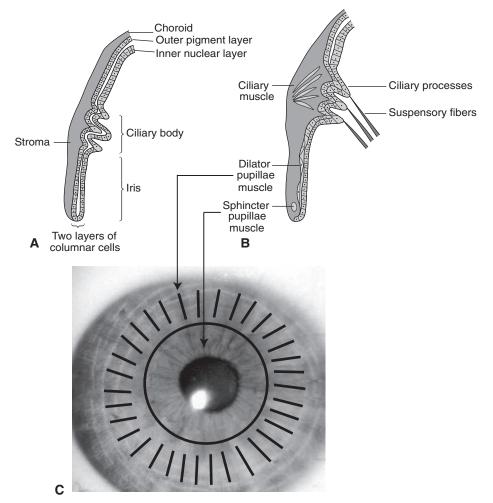



FIGURE 9.1. (A) The optic cup and optic stalk are evaginations of the diencephalon. The optic cup induces surface ectoderm to differentiate into the lens placode. (B) Formation of the optic nerve (CN II) from the optic stalk. The choroid fissure, which is located on the undersurface of the optic stalk, permits access of the hyaloid artery and vein to the inner aspect of the eye. The choroid fissure eventually closes. As ganglion cells form in the retina, axons accumulate in the optic stalk and cause the inner and outer layers of the optic stalk to fuse, obliterating the lumen (or intraretinal space) and forming the optic nerve. (C) The adult eye. Note that the sclera is continuous with the dura mater and the choroid is continuous with the pia-arachnoid. The iridopupillary membrane is normally obliterated.

108

FIGURE 9.2. (**A**, **B**) Sagittal sections through the developing iris and ciliary body. The iris and ciliary body form from the outer pigment layer and inner neural layer of the optic cup. In the adult, this embryological origin is reflected histologically by two layers of columnar epithelium that line both the iris and ciliary body. Note the dilator and sphincter pupillae muscles associated with the iris and the ciliary muscle associated with the ciliary body. (**C**) Photograph of the human eye. Note the radial arrangement (spokelike pattern) of the dilator pupillae muscle around the entire iris. Note the circular arrangement of the sphincter pupillae muscle around the edge of the entire iris.

E. The optic stalk and its derivatives

- **1.** The optic stalk contains the **choroid fissure**, in which the **hyaloid artery and vein** are found.
- 2. The hyaloid artery and vein later become the central artery and vein of the retina.
- 3. The optic stalk contains axons from the ganglion cell layer of the retina.
- **4.** The choroid fissure closes during week 7, so that the optic stalk, together with the axons of the ganglion cells, forms the **optic nerve (CN II)**, **optic chiasm**, **and optic tract**.
- 5. The optic nerve (CN II) is a tract of the diencephalon and has the following characteristics:
 a. The optic nerve is not completely myelinated until 3 months after birth; it is myelinated by oligodendrocytes.
 - **b**. The optic nerve is not capable of regeneration after transection.

c. The optic nerve is invested by the meninges and therefore is surrounded by a subarachnoid space, which plays a role in papilledema.

II. DEVELOPMENT OF OTHER EYE STRUCTURES

- **A. Sclera**. The sclera develops from mesoderm surrounding the optic cup. The sclera forms an outer **fibrous** layer that is continuous with the dura mater posteriorly and the cornea anteriorly.
- **B.** Choroid. The choroids develop from mesoderm surrounding the optic cup. The choroids form a **vascular** layer that is continuous with the pia/arachnoid posteriorly and iris/ciliary body anteriorly.

C. Anterior chamber

- **1.** The anterior chamber develops from mesoderm over the anterior aspect of the eye that is continuous with the sclera and undergoes vacuolization to form a chamber.
- **2**. The anterior chamber essentially splits the mesoderm into two layers:
 - **a**. The mesoderm posterior to the anterior chamber is called the **iridopupillary mem-brane**, which is normally resorbed prior to birth.
 - **b.** The mesoderm anterior to the anterior chamber develops into the **substantia propria of the cornea** and **corneal endothelium**.

D. Cornea

- **1.** The cornea develops from both surface ectoderm and mesoderm lying anterior to the anterior chamber.
- **2**. The surface ectoderm forms the **anterior epithelium of the cornea**.
- 3. The mesoderm forms the substantia propria of the cornea (i.e., Bowman layer, stroma, and Descemet membrane) and corneal endothelium.

E. Lens

- 1. The lens develops from surface ectoderm, which forms the **lens placode**.
- 2. The lens placode invaginates to form the lens vesicle.
- **3**. The adult lens is completely surrounded by a **lens capsule**.
- **4.** The **lens epithelium** is a simple cuboidal epithelium located beneath the capsule only on the anterior surface. The lens epithelium is mitotically active and migrates to the equatorial region of the lens.
- **5.** The **lens fibers** are prismatic remnants of the lens epithelium that lose their nuclei and organelles.
- **6.** The lens fibers are filled with cytoskeletal proteins called **filensin and** α , β , γ -crystallin, which maintain the conformation and transparency of the lens.
- **F.** Vitreous body. The vitreous body develops from mesoderm that migrates through the choroid fissure and forms a transparent gelatinous substance between the lens and retina. It contains the **hyaloid artery**, which is later obliterated to form the **hyaloid canal** of the adult eye.
- **G. Canal of Schlemm.** The canal of Schlemm is found at the sclerocorneal junction called the **limbus** and drains the aqueous humor into the venous circulation. An obstruction of the canal of Schlemm results in increased intraocular pressure (**glaucoma**).
- H. Extraocular muscles. The extraocular muscles develop from mesoderm of somitomeres 1, 2, and 3 (also called preotic myotomes) that surround the optic cup.

t a b I e 9.1 Embryonic Eye Structures and Their Adult Derivatives		
Embryonic Structure	Adult Derivative	
Diencephalon (neuroectoderm))	
Optic cup	Retina, iris epithelium, dilator and sphincter pupillae muscles of iris,	
	ciliary body epithelium	
Optic stalk	Optic nerve (CN II), optic chiasm, optic tract	
Surface ectoderm	Lens, anterior epithelium of cornea, bulbar and palpebral conjunctiva	
Mesoderm	Sclera, choroid, stroma of iris, stroma of ciliary body, ciliary muscle, substantia propria of cornea, corneal endothelium, vitreous body, central artery and vein of retina, extraocular muscles	

III. CONGENITAL MALFORMATIONS OF THE EYE

A. Coloboma iridis (Figure 9.3) is a cleft in the iris caused by failure of the choroid fissure to close in week 7 of development and may extend into the ciliary body, retina, choroid, or optic nerve. A palpebral coloboma, a notch in the eyelid, results from a defect in the developing eyelid. The photograph in Figure 9.3 shows the cleft in the iris.

FIGURE 9.3. Coloboma iridis.

B. Congenital cataracts (Figure 9.4) are opacities of the lens and are usually bilateral. They are fairly common and may result from the following: rubella virus infection, toxoplasmosis, congenital syphilis, Down syndrome (trisomy 21), or galactosemia (an inborn error of metabolism). The photograph in Figure 9.4 shows lens opacities in both eyes.

FIGURE 9.4. Congenital cataracts.

C. Congenital glaucoma (buphthalmos; Figure 9.5) is increased intraocular pressure due to abnormal development of the canal of Schlemm or the iridocorneal filtration angle. It is usually genetically determined but may result from maternal rubella infection.

FIGURE 9.5. Congenital glaucoma (buphthalmos).

D. Detached retina (Figure 9.6) may result from head trauma or may be congenital. The site of detachment is between the outer and inner layers of the optic cup (i.e., between the retinal pigment epithelial layer and outer segment layer of rods and cones of the neural retina). The photograph in Figure 9.6 shows a detached retina. Note the retina (arrow) detached from the choroid and sclera (L denotes the lens).

FIGURE 9.6. Detached retina.

- E. Persistent iridopupillary membrane (Figure 9.7) consists of strands of connective tissue that partially cover the pupil; however, it seldom affects vision. The photograph in Figure 9.7 shows a persistent iridopupillary membrane. Note the strands of connective tissue that partially cover the pupil.
- F. Microphthalmia (Figure 9.8) is a small eye, usually associated with intrauterine infections from the TORCH group of microorganisms (Toxoplasma, rubella virus, cytomegalovirus, and herpes simplex virus). The computed tomography scan in Figure 9.8 shows exophthalmos, small right globe, and a retroocular mass (arrows).
- **G.** Anophthalmia is absence of the eye. It is due to failure of the optic vesicle to form.
- H. Cyclopia is a single orbit and one eye. It is due to failure of median cerebral structures to develop.

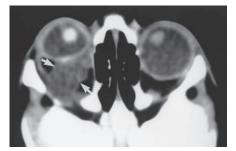


FIGURE 9.7. Persistent iridopupillary membrane.

FIGURE 9.8. Microphthalmia.

- I. Retinocele results from herniation of the retina into the sclera or from failure of the choroid fissure to close.
- J. Retrolental fibroplasia (retinopathy of prematurity) is an oxygen-induced retinopathy seen in premature infants.
- K. Papilledema is edema of the optic disk (papilla) due to increased intracranial pressure. This pressure is reflected into the subarachnoid space, which surrounds the optic nerve (CN II).
- L. Retinitis pigmentosa (RP) is a hereditary degeneration and atrophy of the retina. RP may be transmitted as an autosomal recessive, autosomal dominant, or X-linked trait. RP is characterized by a degeneration of the rods, night blindness (nyctalopia), and "gun barrel vision." RP may also be due to abetalipoproteinemia (Bassen-Kornzweig syndrome), which may be arrested with massive doses of vitamin A.

112 BRS Embryology

M. Hereditary retinoblastoma (RB; Figure 9.9)

- Hereditary RB is an autosomal dominant genetic disorder caused by a mutation in the *RB1* gene on chromosome 13q14.1 for the retinoblastoma (RB) protein.
- **2.** More than 1000 different mutations of the RB1 gene have been identified, which include missense, frameshift, and RNA splicing mutations that result in a premature STOP codon and a **loss-of-function mutation**.
- **3.** RB protein binds to E2F (a gene-regulatory protein) such that there is no expression of target genes whose products stimulate the cell cycle at the G1 checkpoint. RB protein belongs to the family of **tumor-suppressor genes**.
- **4.** Clinical features include a malignant tumor of the retina that develops in children younger than 5 years of age, a whitish mass in the pupillary area behind the lens (leukokoria; the "cat's eye"), and strabismus.
- **5.** The computed tomography scan in Figure 9.9 of RB shows multiple tumor calcifications (*arrows*) within the left intraorbital mass.

FIGURE 9.9. Retinoblastoma.

Study Questions for Chapter 9

1. The surface ectoderm gives rise to which of the following structures?

- (A) Dilator pupillae muscle
- (B) Retina
- (C) Lens
- (D) Sclera
- (E) Choroid

2. Failure of the choroid fissure to close results in

- (A) congenital detached retina
- (B) congenital aniridia
- (C) congenital aphakia
- (D) coloboma iridis
- (E) microphthalmos
- **3.** The optic cup is an evagination of which of the following?
- (A) Telencephalon
- (**B**) Diencephalon
- (C) Mesencephalon
- (D) Metencephalon
- (E) Myelencephalon

4. The epithelium of the ciliary body is derived from

- (A) ectoderm
- (B) mesoderm
- (C) endoderm
- (D) neuroectoderm
- (E) neural crest cells

5. Hyperoxygenation of premature infants may result in

- (A) congenital glaucoma
- (B) microphthalmia
- (C) coloboma
- **(D)** retrolental fibroplasia
- (E) persistent pupillary membrane

6. The optic nerve is a tract of the diencephalons that is not completely myelinated until

- (A) 5 years after birth
- (B) 2 years after birth
- (C) 1 year after birth
- (D) 3 weeks after birth
- (E) 3 months after birth
- 7. The hyaloid canal is found in the
- (A) vitreous body
- (B) choroid
- (C) optic stalk
- (D) ciliary body
- (E) intraretinal space
- 8. Aqueous humor is produced by the
- (A) choroid plexus
- (B) trabecular meshwork
- (C) ciliary processes
- (D) vitreous body
- (E) lens vesicle

9. Aqueous humor enters the venous circulation via

- (A) arachnoid villi
- (B) scleral canal
- (C) hyaloid canal
- (D) canal of Schlemm
- (E) Cloquet's canal

10. In a detached retina, the site of detachment is found

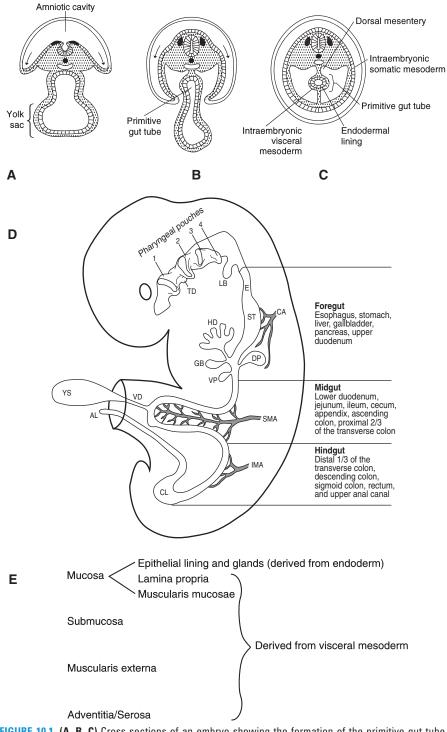
- (A) within the outer plexiform layer
- (B) within the inner plexiform layer
- (C) between the inner nuclear layer and the outer nuclear layer
- **(D)** between the choriocapillaris and the pigment epithelial layer
- (E) between the pigment epithelial layer and the layer of outer segments of rods and cones

Answers and Explanations

- **1. C**. The lens forms from the lens placode that is induced by the optic cup.
- **2. D.** Failure of the choroid (optic) fissure to close results in a cleft of the iris—a coloboma iridis. This defect may extend into the ciliary body, choroid, optic nerve, or retina. Congenital aphakia—absence of the lens—may result from defective development of the lens placode.
- **3. B.** The optic cup and its derivatives—the retina and optic nerve—develop from the diencephalon.
- **4. D.** The ciliary body is derived from the anterior two layers of the optic cup (neuroectoderm), which form the epithelium, and from an anterior extension of the choroid (mesoderm).
- **5. D.** Retrolental fibroplasia results from hyperoxygenation of premature infants. In premature infants, high oxygen concentration results in vaso-obliteration of the terminal arterioles, leading to hemorrhage and infarction of the retina. This phenomenon is peculiar to the incompletely vascularized peripheral retina.
- **6. E.** The axons of the optic nerve are not completely myelinated until 3 months after birth. Myelinated axons are normally not found in the retina. The optic nerve is not a true peripheral nerve but a tract of the diencephalon; when severed, the optic nerve does not regenerate. Myelination in the central nervous system (CNS) is accomplished by oligodendrocytes; oligodendrocytes are not found in the retina.
- **7. A.** The hyaloid canal (Cloquet's canal) is found in the vitreous body. In early development, a hyaloid artery passes through the vitreous body to perfuse the developing lens; in the late fetal period, this artery is obliterated to form the hyaloid canal.
- **8. C.** Aqueous humor is produced by the ciliary processes of the ciliary body. It flows from the posterior chamber, through the pupil, into the anterior chamber, and finally to the canal of Schlemm, which empties into the extraocular veins.
- **9. D.** Aqueous humor enters the venous circulation via the canal of Schlemm. Blockage of this canal results in increased intraocular pressure (glaucoma).
- **10. E.** The site of retinal detachment is between the pigment epithelial layer and the layer of outer segments of rods and cones; this corresponds to the intraretinal space between the inner and outer layers of the optic cup. Retinal detachment occurs when fluid from the vitreous compartment passes through a retinal hole and separates the pigment epithelial layer from the layer of outer segments of rods and cones.

chapter **10** Digestive System

I. OVERVIEW (FIGURE 10.1)


- **A.** The **primitive gut tube** is formed from the incorporation of the dorsal part of the yolk sac into the embryo due to the craniocaudal folding and lateral folding of the embryo.
- **B.** The primitive gut tube extends from the **oropharyngeal membrane** to the **cloacal membrane** and is divided into the **foregut**, **midgut**, and **hindgut**.
- **C.** Histologically, the general plan of the adult gastrointestinal tract consists of a **mucosa** (epithelial lining and glands, lamina propria, and muscularis mucosae), **submucosa, muscularis externa**, and **adventitia** or **serosa**.
- **D**. Embryologically, the epithelial lining and glands of the mucosa are derived from **endoderm**, whereas the other components are derived from **visceral mesoderm**.
- **E**. Early in development, the epithelial lining the gut tube proliferates rapidly and obliterates the lumen. Later, **recanalization** occurs.

II. DERIVATIVES OF THE FOREGUT

Foregut derivatives are supplied by the **celiac trunk**. The exception to this is the esophagus, for which the intraabdominal portion is supplied by the celiac trunk, whereas the intrathoracic portion is supplied by other branches of the aorta.

A. Esophagus

- **1. Development.** The foregut is divided into the esophagus dorsally and the trachea ventrally by the **tracheoesophageal folds**, which fuse to form the **tracheoesophageal septum**. The esophagus is initially short but lengthens with descent of the heart and lungs. During development, the endodermal lining of the esophagus proliferates rapidly and obliterates the lumen; later, recanalization occurs.
- **2. Sources**. The stratified squamous epithelium, mucosal glands, and submucosal glands of the definitive esophagus are derived from endoderm. The lamina propria, muscularis mucosae, submucosa, skeletal muscle and smooth muscle of muscularis externa, and adventitia of the definitive esophagus are derived from visceral mesoderm.

FIGURE 10.1. (**A**, **B**, **C**) Cross sections of an embryo showing the formation of the primitive gut tube. (**D**) Development of gastrointestinal tract showing the foregut, midgut, and hindgut along with the adult derivatives. The entire length of the endodermal gut tube is shown from the mouth to the anus. The fates of the lung bud (LB), pharyngeal pouches (1–4), and thyroid diverticulum (TD) are covered in later chapters. E = esophagus; ST = stomach; HD = hepatic diverticulum; GB = gall bladder; VP = ventral pancreaticbud; DP = dorsal pancreatic bud; CA = celiac artery; YS = yolk sac; VD = vitelline duct; AL = allantois;SMA = superior mesenteric artery; CL = cloaca; IMA = inferior mesenteric artery. (**E**) Diagram showingthe general plan of histological and embryological organization of the adult gastrointestinal tract.

3. Clinical considerations

- a. Esophageal atresia (Figure 10.2) occurs when the tracheoesophageal septum deviates too far dorsally, causing the esophagus to end as a closed tube. About 33% of patients with esophageal atresia also have other congenital defects associated with the VATER (vertebral defects, anal atresia, tracheoesophageal fistula, and renal defects) or VACTERL (similar to VATER plus cardiovascular defects and upper limb defects) syndromes. It is associated clinically with polyhydramnios (the fetus is unable to swallow amniotic fluid) and a tracheoesophageal fistula. The photograph in Figure 10.2 (posterior view) shows that the esophagus terminates blindly in a blunted esophageal pouch (arrow). There is a distal esophageal connection with the trachea at the carina (arrowhead).
- **b. Esophageal stenosis (Figure 10.3)** occurs when the lumen of the esophagus is narrowed and usually involves the midesophagus. The stenosis may be caused by submucosal/muscularis externa hypertrophy, remnants of the tracheal cartilaginous ring within the wall of the esophagus, a membranous diaphragm obstructing the lumen probably due to incomplete recanalization. The light micrograph in Figure 10.3 shows the stratified squamous epithelial lining of the esophagus and submucosal glands. Note that a portion of the muscular wall contains remnants of cartilage (arrow), which contributes to a stenosis.
- c. Esophageal duplication (Figure 10.4) occurs most commonly due to a congenital esophageal cyst, which is usually found (60% of the cases) in the lower esophagus. Duplication cysts may lie on the posterior aspect of the esophagus, where they protrude into the posterior mediastinum or within the wall of the esophagus (i.e., intramural). The barium esophagram in Figure 10.4 demonstrates a large intramural duplication cyst in the proximal esophagus (dashed lines). The cyst shows acute angles with the esophageal lumen, indicating its intramural location.

FIGURE 10.2. Esophageal atresia.

FIGURE 10.3. Esophageal stenosis.

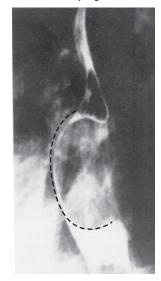


FIGURE 10.4. Esophageal duplication.

- d. Vascular compression of the esophagus (Figure 10.5) occurs due the abnormal origin of the right subclavian artery due to developmental anomalies of the aortic arches. The anomalous right subclavian artery passes from the aortic arch behind the esophagus and may cause dysphagia ("dysphagia lusoria"). The barium esophagram in the same patient (Figure 10.5) reveals an oblique compression of the esophagus (*arrow*) due to the anomalous right subclavian artery.
- e. Achalasia (Figure 10.6) occurs due to the loss of ganglion cells in the myenteric plexus (Auerbach) and is characterized by the failure to relax the lower esophageal sphincter, which causes progressive dysphagia and difficulty in swallowing. The barium esophagram of the distal esophagus in Figure 10.6 shows a long, narrowed segment ("bird beak") of the esophagus secondary to muscular hypertrophy in long-standing achalasia.

B. Stomach (Figure 10.7)

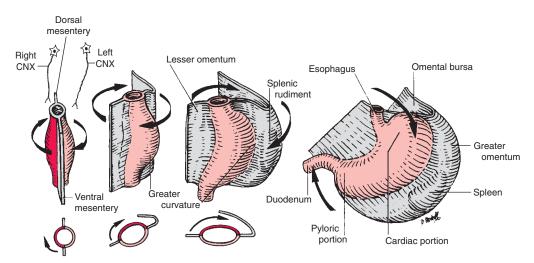

- 1. Development. A fusiform dilation forms in the foregut in week 4 that gives rise to the primitive stomach. The dorsal part of the primitive stomach grows faster than the ventral part, thereby resulting in the greater and lesser curvatures, respectively. The primitive stomach rotates 90° clockwise around its longitudinal axis. The 90° rotation affects all foregut structures and is responsible for the adult anatomical relationship of foregut viscera. As a result of this clockwise rotation, the dorsal mesentery is carried to the left and eventually forms the greater omentum: the left vagus nerve (cranial **nerve [CN] X)** innervates the ventral surface of the stomach: and the **right vagus nerve** (CN X) innervates the dorsal surface of the stomach.
- **2. Sources.** Surface mucous cells lining the stomach, mucous neck cells, parietal cells, chief cells, and enteroendocrine cells comprising the gastric glands of the definitive stomach are derived from endoderm. The lamina propria; muscularis mucosae; submucosa; the outer longitudinal, middle circular, and inner oblique layers of smooth muscle of the muscularis externa; and the serosa of the definitive stomach are derived from visceral mesoderm.

FIGURE 10.5. Vascular compression of the esophagus.

FIGURE 10.6. Achalasia.

FIGURE 10.7. Diagram depicting the development and 90° rotation of the stomach from week 4 through week 6. CNX = cranial nerve X.

3. Hypertrophic pyloric stenosis (Figure 10.8) occurs when the muscularis externa in the pyloric region hypertrophies and forms a small palpable mass ("olive"), causing a narrow pyloric lumen that obstructs food passage. It is associated clinically with projectile, nonbilious vomiting after feeding and a small, palpable mass at the right costal margin. Increased incidence has been found in infants treated with the antibiotic erythromycin. The barium contrast radiograph in Figure 10.8 shows the long, narrow, double channel of the pylorus (*arrows*) in a patient with hypertrophic pyloric stenosis.

C. Liver (Figure 10.9)

1. **Development**. The endodermal lining of the foregut forms an outgrowth (hepatic diverticulum) into the surrounding mesoderm of the septum transversum through induction by fibroblast growth factors (FGFs) FGF-1, FGF-2, and FGF-8 released by cardiac mesoderm (which is in close vicinity). The mesoderm of the septum transversum is involved in the formation of the diaphragm, which explains the intimate gross anatomical relationship between the liver and diaphragm. Cords of hepatoblasts (called hepatic cords) from the hepatic diverticulum grow into the mesoderm of the septum transversum, where critical hepatoblast/mesoderm interactions occur. The hepatic cords arrange themselves around the vitelline veins and umbilical veins, which course through the septum transversum and form the hepatic sinusoids. Due to the tremendous growth of the liver, the liver

FIGURE 10.8. Hypertrophic pyloric stenosis.

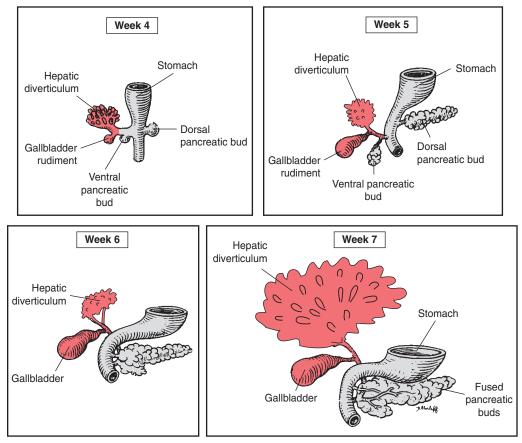


FIGURE 10.9. Sequence of events in the development of the hepatic diverticulum and gall bladder rudiment from week 4 through week 7.

bulges into the abdominal cavity, thereby stretching the septum transversum to form the **ventral mesentery**, consisting of the **falciform ligament** and the **lesser omentum**. The falciform ligament contains the **left umbilical vein**, which regresses after birth to form the **ligament um teres**. The lesser omentum can be divided into the **hepatogastric ligament** and **hepatoduodenal ligament**. The hepatoduodenal ligament contains the **bile duct**, **portal vein**, and **hepatic artery** (i.e., **portal triad**).

- **2. Sources.** Hepatocytes and the simple columnar or cuboidal epithelium lining the biliary tree of the definitive liver are derived from endoderm. Kupffer cells, hematopoietic cells, endothelium of the sinusoids, and fibroblasts (connective tissue) of the definitive liver are derived from mesoderm.
- **3. Clinical considerations.** Congenital malformations of the liver are rare except for minor gross anatomical variations.

D. Gallbladder and extrahepatic bile ducts (Figure 10.9)

- Development. The connection between the hepatic diverticulum and the foregut narrows to form the bile duct. An outgrowth from the bile duct gives rise to the gallbladder rudiment and cystic duct. The cystic duct divides the bile duct into the common hepatic duct and the common bile duct. During development, the endodermal lining of the gallbladder and extrahepatic bile ducts proliferates rapidly and obliterates the lumen; later, recanalization occurs.
- **2. Sources.** Simple columnar epithelium lining the definitive gallbladder and simple columnar or cuboidal epithelium lining the definitive extrahepatic bile ducts are derived from endoderm. The lamina propria, muscularis externa, and adventitia of the definitive gallbladder are derived from visceral mesoderm.

120

3. Clinical considerations

- a. Developmental anomalies of the gall bladder (Figure 10.10) anatomy are fairly common in which two, bilobed, diverticula, and septated gall bladders are found. Figure 10.10 shows the developmental anomalies of the gall bladder. Septated gall bladder is most likely due to incomplete recanalization of the lumen.
- b. Developmental anomalies of the cystic duct (Figure 10.11) anatomy are fairly common. Figure 10.11 shows various developmental anomalies of the cystic duct.
- **c. Biliary atresia (Figure 10.12)** is defined as the obliteration of extrahepatic and/or intrahepatic ducts. The ducts are replaced by fibrotic tissue due to acute and chronic inflammation. It is associated clinically with progressive neonatal jaundice with onset soon after birth, white clay–colored stool, and dark-colored urine. The average survival time is 12–19 months with a 100% mortality rate. Figure 10.12 shows different forms of extrahepatic biliary atresia.
- **d. Intrahepatic gall bladder** occurs when the gallbladder rudiment advances beyond the hepatic diverticulum and becomes buried within the substance of the liver.
- e. Floating gall bladder occurs when the gallbladder rudiment lags behind the hepatic diverticulum and thereby becomes suspended from the liver by a mesentery. A floating gall bladder is at risk for **torsion** (i.e., a twisting or rotation around the axis of the mesentery).

E. Pancreas (Figure 10.9)

1. Development. The dorsal pancreatic bud is a direct outgrowth of foregut endoderm, whose formation is induced by the notochord. The **ventral pancreatic bud** is a direct outgrowth of foregut endoderm, whose formation is induced by hepatic mesoderm. Within both pancreatic buds, endodermal tubules surrounded by mesoderm branch repeatedly to form acinar cells and ducts (i.e., exocrine pancreas). Isolated clumps of endodermal cells bud from the tubules and accumulate within the mesoderm to form islet cells (i.e., endocrine pancreas) in the following sequence (first \rightarrow last): **alpha cells** $(glucagon) \rightarrow beta cells (insulin) \rightarrow delta$ cells (somatostatin) and PP cells (pancreatic polypeptide). Because of the 90° clockwise rotation of the duodenum, the ventral bud rotates dorsally and fuses with the dorsal bud

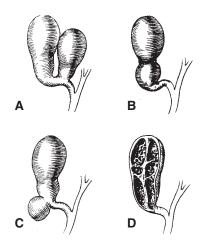


FIGURE 10.10. Developmental anomalies of the gallbladder. (A) Two gall bladders. (B) Bilobed gall bladder. (C) Diverticulum of the gall bladder. (D) Septated gall bladder.

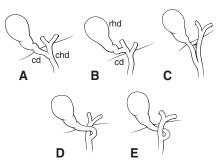


FIGURE 10.11. Developmental anomalies of the cystic duct. (A) The cystic duct (cd) joins the common hepatic duct (chd) directly (most common anatomical arrangement). (B) The cystic duct joins the right hepatic duct (rhd). (C) Low junction of the cystic duct with the common hepatic duct. (D) Anterior spiral of the cystic duct. (E) Posterior spiral of the cystic duct.

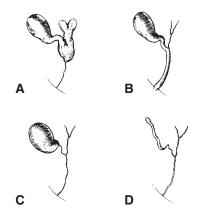


FIGURE 10.12. Different forms of extrahepatic biliary atresia. (A, B, C) Partial. (D) Complete.

to form the definitive adult pancreas. The ventral bud forms the **uncinate process** and a **portion of the head of the pancreas**. The dorsal bud forms the **remaining portion of the head, body**, and **tail of the pancreas**. The main pancreatic duct is formed by the anatomosis of the **distal two thirds of the dorsal pancreatic duct** (the proximal one third regresses) and the **entire ventral pancreatic duct** (48% incidence). The main pancreatic duct and common bile duct form a single opening (**hepatopancreatic ampulla of Vater**) into the duodenum at the tip of a major papillae (**hepatopancreatic papillae**).

- **2. Sources.** Acinar cells, islet cells, and simple columnar or cuboidal epithelium lining the pancreatic ducts of the definitive pancreas are derived from endoderm. Surrounding connective tissue and vascular components of the definitive pancreas are derived from visceral mesoderm.
- 3. Clinical considerations
 - **a.** Accessory pancreatic duct (Figure 10.13) develops when the proximal one third of the dorsal pancreatic duct persists and opens into the duodenum through minor papillae at a site proximal to the ampulla of Vater (33% incidence). Figure 10.13 shows an accessory pancreatic duct.
 - b. Pancreas divisum (Figure 10.14) occurs when the distal two thirds of the dorsal pancreatic duct and the entire ventral pancreatic duct fail to anastomose and the proximal one third of the dorsal pancreatic duct persists, thereby forming two separate duct systems (4% incidence). The dorsal pancreatic duct drains a portion of the head, body, and tail of the pancreas by opening into the duodenum through minor papillae. The ventral pancreatic duct drains the uncinate process and a portion of the head of the pancreas by opening into the duodenum through the major papillae. Patients with pancreas divisum are prone to pancreatitis, especially if the opening of the dorsal pancreatic duct at the minor papillae is small. Figure 10.14 shows pancreas divisum. Note that the distal two thirds of the dorsal pancreatic duct and the ventral pancreatic bud fail to anastomose, thereby forming two separate duct systems. An endoscopic retrograde pancreatogram performed through the accessory minor papillae shows the dorsal pancreatic duct in pancreatic divisum.

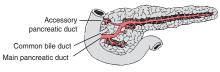


FIGURE 10.13. Accessory pancreatic duct.

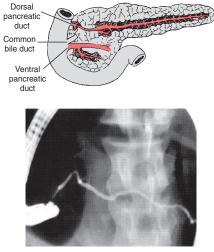


FIGURE 10.14. Pancreas divisum.

Chapter 10 Digestive System

- c. Annular pancreas (Figure 10.15) occurs when the ventral pancreatic bud fuses with the dorsal bud both dorsally and ventrally, thereby forming a ring of pancreatic tissue around the duodenum and causing severe duodenal obstruction. Newborns and infants are intolerant of oral feeding and often have bilious vomiting. Radiographic evidence of an annular pancreas is indicated by a duodenal obstruction, where a "double bubble" sign is often seen due to dilation of the stomach and distal duodenum (also associated with Down syndrome). The barium contrast radiograph in Figure 10.15 shows a partial duodenal obstruction consistent with an annular pancreas.
- d. Hyperplasia of pancreatic islets occurs when fetal islets are exposed to high blood glucose levels, as frequently happens in infants of diabetic mothers. Glucose freely crosses the placenta and stimulates fetal islet hyperplasia and insulin secretion, which causes increased fat and glycogen deposition in fetal tissues. This results in increased birth weight of infants at term (i.e., macrosomia) and serious episodes of hypoglycemia in the postnatal period.

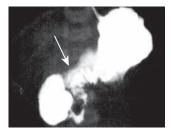
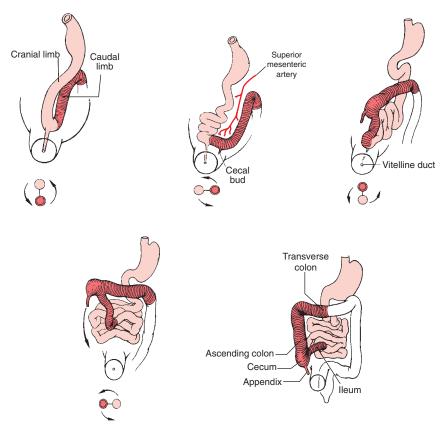


FIGURE 10.15. Annular pancreas.

F. Upper duodenum develops from the caudal-most part of the foregut.


III. DERIVATIVES OF THE MIDGUT (FIGURE 10.16)

Derivatives of the midgut are supplied by the superior mesenteric artery.

A. Lower duodenum develops from the cranial-most part of the midgut. The junction of the upper and lower duodenum is just distal to the opening of the common bile duct.

B. Jejunum, ileum, cecum, appendix, ascending colon, and the proximal two thirds of the transverse colon (Figure 10.16)

- 1. Development. The midgut forms a U-shaped loop (midgut loop) that herniates through the primitive umbilical ring into the extraembryonic coelom (i.e., physiological umbilical herniation) beginning at week 6. The midgut loop consists of a cranial limb and a caudal limb. The cranial limb forms the jejunum and upper part of the ileum. The caudal limb forms the cecal diverticulum, from which the cecum and appendix develop; the rest of the caudal limb forms the lower part of the ileum, ascending colon, and proximal two thirds of the transverse colon. The midgut loop rotates a total of 270° counterclockwise around the superior mesenteric artery as it returns to the abdominal cavity, thus reducing the physiological herniation, around week 11.
- **2. Sources.** Simple columnar absorptive cells lining midgut derivatives, goblet cells, Paneth cells, and enteroendocrine cells comprising the intestinal glands are derived from endoderm. The lamina propria, muscularis mucosae, submucosa, and inner circular and outer longitudinal smooth muscle of the muscularis externa and serosa are derived from visceral mesoderm.

FIGURE 10.16. Diagram depicting the 270° counterclockwise rotation of the midgut loop. Darkened area indicates the caudal limb. Note that after the 270° rotation, the cecum and appendix are located in the upper abdominal cavity. Later in development, there is growth in the direction indicated by the *bold arrow* so that the cecum and appendix end up in the lower right quadrant.

3. Clinical considerations

- a. **Omphalocele (Figure 10.17)** occurs when abdominal contents herniates through the umbilical ring and persists outside the body, covered variably by a translucent peritoneal membrane sac (a light gray, shiny sac) protruding from the base of the umbilical cord. Large omphaloceles may contain stomach, liver, and intestines. Small omphaloceles contain only intestines. Omphaloceles are usually associated with other congenital anomalies (e.g., trisomy 13, trisomy 18, or Beckwith-Wiedemann syndrome) and with increased levels of *a*-fetoprotein. The photograph in Figure 10.17 shows an infant with an omphalocele.
- **b. Gastroschisis (Figure 10.18)** occurs when there is a defect in the ventral abdominal wall, usually to the right of the umbilical ring, through which there is a massive evisceration of intestines (other organs may also be involved). The intestines are

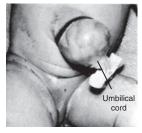


FIGURE 10.17. Omphalocele.

FIGURE 10.18. Gastroschisis.

not covered by a peritoneal membrane, are directly exposed to amniotic fluid, are thickened, and are covered with adhesions. The photograph in Figure 10.18 shows an infant with gastroschisis.

- c. Ileal diverticulum (Meckel's diverticulum: Figure 10.19) occurs when a remnant of the vitelline duct persists, thereby forming an outpouching located on the antimesenteric **border** of the ileum. The outpouching may connect to the umbilicus via a fibrous cord or fistula. A Meckel's diverticulum is usually located about 30 cm proximal to the ileocecal valve in infants and varies in length from 2 to 15 cm. Heterotopic gastric mucosa may be present, which leads to ulceration, perforation, or gastrointestinal bleeding, especially if a large number of parietal cells are present. It is associated clinically with symptoms resembling appendicitis and bright-red or dark-red stools (i.e., bloody). The photograph in Figure 10.19 shows a Meckel's diverticulum (arrow; IL denotes the ileum).
- **d.** Nonrotation of the midgut loop (Figure 10.20) occurs when the midgut loop rotates only 90° counterclockwise, thereby positioning the small intestine entirely on the right side and the large intestine entirely on the left side, with the cecum located either in the left upper quadrant or the left iliac fossa. The photograph in Figure 10.20 shows nonrotation of the midgut loop. Note the small intestines (SI) on the right side and the large intestines (LI) on the left side.
- e. Malrotation of the midgut loop (Figure 10.21) occurs when the midgut loop undergoes only partial counterclockwise rotation. This results in the cecum and appendix lying in a subpyloric or subhepatic location and the small intestine being suspended by only a vascular pedicle (i.e., not a broad mesentery). A major clinical complication of malrotation is volvulus (twisting of the small intestines around the vascular pedicle), which may cause necrosis due to compromised blood supply. (Note: The abnormal position of the appendix due to malrotation of the midgut should be considered when diagnosing appendicitis.) The photograph in Figure 10.21 shows the condition of volvulus. Note the twisting (arrow) of the small intestines around the axis of the mesentery.

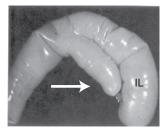


FIGURE 10.19. Meckel's diverticulum.

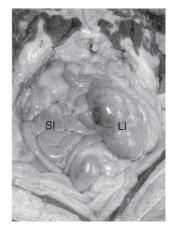


FIGURE 10.20. Nonrotation of the midgut loop.

FIGURE 10.21. Volvulus.

- **f. Reversed rotation of the midgut loop** occurs when the midgut loop rotates clockwise instead of counterclockwise, causing the large intestine to enter the abdominal cavity first. This results in the large intestine anatomically being located posterior to the duodenum and superior mesenteric artery.
- **g. Intestinal atresia and stenosis.** Atresia occurs when the lumen of the intestines is completely occluded, whereas stenosis occurs when the lumen of the intestines is narrowed. The causes of these conditions seem to be both failed recanalization and/or an ischemic intrauterine event ("vascular accident").
 - **i. Type l atresia** is characterized by a membranous septum or diaphragm of mucosa and submucosa that obstructs the lumen.
 - **ii. Type II atresia (Figure 10.22)** is characterized by two blind bowel ends connected by a fibrous cord with an intact mesentery. The photograph in Figure 10.22 shows type II atresia. Note the fibrous cord (*arrow*).

iii. Type Illa atresia (Figure 10.23) is characterized by two blind bowel ends separated by a gap in the mesentery. The photograph in Figure 10.23 shows type IIIa atresia. Note the gap in the mesen-

tery (asterisk).

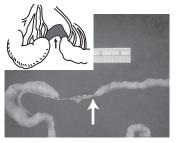


FIGURE 10.22. Type II atresia.

FIGURE 10.23. Type IIIa atresia.

- iv. Type IIIb atresia ("apple peel" atresia; Figure 10.24) is characterized by a bowel segment (distal to the atresia) that is shortened, coiled around a mesentery remnant, and lacking a blood supply from the superior mesentery artery (blood supply to this bowel segment is via collateral circulation). The photograph in Figure 10.24 shows "apple peel" atresia. Note the coiled bowel segment (*arrow*).
- v. Type IV atresia is characterized by multiple atresia throughout the bowel having the appearance of a "string of sausages." Proximal atresias are associated clinically with polyhydramnios and bilious vomiting early after birth. Distal atresias are associated clinically with normal amniotic fluid, abdominal distention, later vomiting, and failure to pass meconium.

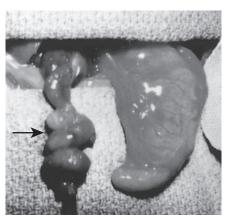



FIGURE 10.24. Type IIIb atresia.

- h. Duplication of the intestines (Figure 10.25) occurs when a segment of the intestines is duplicated as a result of abnormal recanalization (most commonly near the ileocecal valve). The duplication is found on the mesenteric border. Its lumen generally communicates with the normal bowel, shares the same blood supply as the normal bowel, and is lined by normal intestinal epithelium, but heterotopic gastric and pancreatic tissue has been identified. It is associated clinically with an abdominal mass, bouts of abdominal pain, vomiting, chronic rectal bleeding, intussusception, and perforation. The photograph in Figure 10.25 shows a duplication of the intestines. Note the larger diameter of the normal bowel segment (N) and the smaller diameter of the duplicated segment (D). Atretic areas (arrows) are indicated in the duplicated segment.
- i. Intussusception occurs when a segment of bowel invaginates or telescopes into an adjacent bowel segment, leading to obstruction or ischemia. This is one of the most common causes of obstruction in children younger than 2 years of age, is most often idiopathic, and is most commonly involves the ileum and colon (i.e., ileocolic). It is associated clinically with acute onset of intermittent abdominal pain, vomiting, bloody stools, diarrhea, and somnolence.
- j. Retrocecal and retrocolic appendix occurs when the appendix is located on the posterior side of the cecum or colon, respectively. These anomalies are very common and important to remember during appendectomies. Note: The appendix is normally found on the medial side of the cecum.

FIGURE 10.25. Duplication of the intestines.

IV. DERIVATIVES OF THE HINDGUT (FIGURE 10.26)

Derivatives of the hindgut are supplied by the inferior mesenteric artery.

- A. Distal one third of the transverse colon, descending colon, sigmoid colon.
 - 1. **Development.** The cranial end of the hindgut develops into the distal one third of the transverse colon, descending colon, and sigmoid colon. The terminal end of the hindgut is an endoderm-lined pouch called the **cloaca**, which contacts the surface ectoderm of the **proctodeum** to form the **cloacal membrane**.
 - **2. Sources.** Simple columnar absorptive cells lining hindgut derivatives, goblet cells, and enteroendocrine cells comprising the intestinal glands are derived from endoderm. The lamina propria, muscularis mucosae, submucosa, inner circular and outer longitudinal (taeniae coli) smooth muscle of the muscularis externa, and serosa are derived from visceral mesoderm.

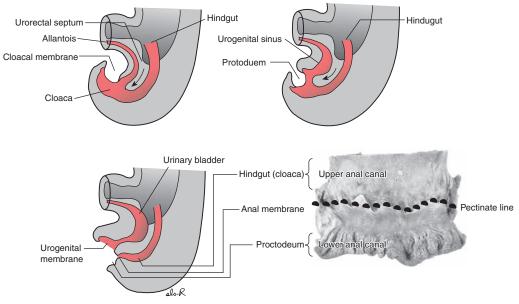


FIGURE 10.26. Diagram depicting the partitioning of the cloaca by urorectal septum. The *bold arrow* shows the direction of growth of the urorectal septum.

B. Rectum and upper anal canal

- Development. The cloaca is partitioned by the urorectal septum into the rectum and upper anal canal and the urogenital sinus. The cloacal membrane is partitioned by the urorectal septum into the anal membrane and urogenital membrane. Note: The urorectal septum fuses with the cloacal membrane at the future site of the gross anatomical perineal body.
- 2. Sources. As mentioned in Section IVA2.
- 3. Clinical considerations
 - a. Colonic aganglionosis (Hirschsprung disease; Figure 10.27) is caused by the arrest of the caudal migration of neural crest cells. The hallmark is the absence of ganglionic cells in the myenteric and submucosal plexuses, most commonly in the sigmoid colon and rectum, resulting in a narrow segment of colon (i.e., the colon fails to relax). Although the ganglionic cells are absent, there is a proliferation of hypertrophied nerve fiber bundles. The most characteristic functional finding is the failure of internal anal sphincter to relax following rectal distention (i.e., abnormal rectoanal reflex). Mutations of the RET **protooncogene** (chromosome 10g.11.2) have been associated with Hirschsprung disease. It is associated clinically with a distended abdomen, inability to pass



FIGURE 10.27. Colonic aganglionosis (Hirschsprung disease).

meconium, gushing of fecal material on a rectal digital exam, and a loss of peristalsis in the colon segment distal to the normal innervated colon. The radiograph in Figure 10.27 was taken after a barium enema of a patient with Hirschsprung disease. The upper segment of the normal colon (*single asterisk*) is distended with fecal material. The lower segment of the colon (*double asterisk*) is narrow. The lower segment is the portion of the colon where the ganglionic cells in the myenteric and submucosal plexuses are absent. The case shows a low transition zone (T) between the normal colon and the aganglionic colon.

b. Rectovesical fistula (Figure 10.28) is an abnormal communication between the rectum and the urinary bladder due to abnormal formation of the urorectal septum. This fistula is clinically associated with the presences of meconium in the urine. The diagram in Figure 10.28 shows a rectovesical fistula.

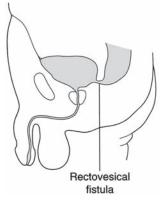


FIGURE 10.28. Rectovesical fistula.

- **c. Rectourethral fistula (Figure 10.29)** is an abnormal communication between the rectum and the urethra due to abnormal formation of the urorectal septum. This fistula is clinically associated with the presences of meconium in the urine. A rectourethral fistula that generally occurs in males is associated with the prostatic urethra and is therefore sometimes called a **rectoprostatic fistula**. The diagram in Figure 10.29 shows a rectourethral fistula.
- **d. Rectovaginal fistula (Figure 10.30)** is an abnormal communication between the rectum and vagina due to abnormal formation of the urorectal septum. This fistula is associated clinically with the presences of meconium in the vagina. The diagram in Figure 10.30 shows a rectovaginal fistula.

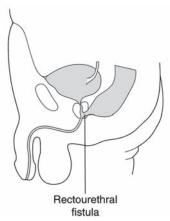
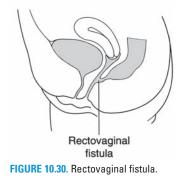



FIGURE 10.29. Rectourethral fistula.

V. ANAL CANAL (FIGURE 10.26)

- A. **Development**. The **upper anal canal** develops from the **hindgut**. The **lower anal canal** develops from the **proctodeum**, which is an invagination of surface ectoderm caused by a proliferation of mesoderm surrounding the anal membrane. The dual components (hindgut and proctodeum) involved in the embryological formation of the entire anal canal determine the gross anatomy of this area, which becomes important when considering the characteristics and metastasis of anorectal tumors. The junction between the upper and lower anal canals is indicated by the **pectinate line**, which also marks the site of the former **anal membrane**. In the adult, the pectinate line is located at the lower border of the anal columns.
- **B. Sources.** The simple columnar epithelium lining the upper anal canal is derived from endoderm, whereas the simple columnar and stratified columnar epithelia lining the lower anal canal are derived from ectoderm. The lamina propria, muscularis mucosae, submucosa, muscularis externa consisting of the internal and external anal sphincters, and adventitia are derived from mesoderm.

C. Clinical considerations

- **1. Imperforate anus** occurs when the anal membrane fails to perforate; a layer of tissue separates the anal canal from the exterior.
- **2. Anal agenesis** occurs when the anal canal ends as a blind sac **below the puborectalis muscle** due to abnormal formation of the urorectal septum. It is usually associated with rectovesical, rectourethral, or rectovaginal fistula.
- **3. Anorectal agenesis** occurs when the rectum ends as a blind sac **above the puborectalis muscle** due to abnormal formation of the urorectal septum. It is the most common type of anorectal malformation and is usually associated with a rectovesical, rectourethral, or rectovaginal fistula.
- **4. Rectal atresia** occurs when both the rectum and anal canal are present but remain unconnected due to either abnormal recanalization or a compromised blood supply causing focal atresia.

VI. MESENTERIES

The primitive is suspended within the peritoneal cavity of the embryo by the **ventral mesentery** and **dorsal mesentery**, from which all adult mesenteries are derived (Table 10.1).

t a b l e 10.1 Derivation of Adult Mesenteries	
Embryonic Mesentery	Adult Mesentery
Ventral	Lesser omentum (hepatoduodenal and hepatogastric ligaments), falciform ligament of liver, coronary ligament of liver, triangular ligament of liver
Dorsal	Greater omentum (gastrorenal, gastrosplenic, gastrocolic, and splenorenal ligaments), mesentery of small intestine, mesoappendix, transverse mesocolon, sigmoid mesocolon

Study Questions for Chapter 10

1. Pancreatic islets consist of alpha, beta, and delta cells, which secrete glucagon, insulin, and somatostatin, respectively. These cells are derived from

- (A) mesoderm
- (B) endoderm
- (C) ectoderm
- (D) neuroectoderm
- (E) neural crest cells

2. A 2-month-old baby with severe jaundice also has dark-colored urine (deep yellow) and white clay–colored stool. Which of the following disorders might be suspected?

- (A) Esophageal stenosis
- **(B)** Annular pancreas
- (C) Hypertrophic pyloric stenosis
- (D) Extrahepatic biliary atresia
- (E) Duodenal atresia

3. A 28-day-old baby is brought to the physician because of projectile vomiting after feeding. Until this time, the baby has had no problems in feeding. On examination, a small knot is palpated at the right costal margin. Which of the following disorders might be suspected?

- (A) Esophageal stenosis
- (B) Annular pancreas
- (C) Hypertrophic pyloric stenosis
- **(D)** Extrahepatic biliary atresia
- (E) Duodenal atresia

4. Which of the following arteries supplies foregut derivatives of the digestive system?

- (A) Celiac trunk
- **(B)** Superior mesenteric artery
- (C) Inferior mesenteric artery
- (D) Right umbilical artery
- (E) Intercostal artery

5. The most common type of anorectal malformation is

- (A) imperforate anus
- (B) anal agenesis
- (C) anorectal agenesis
- (D) rectal atresia
- (E) colonic aganglionosis

6. The simple columnar or cuboidal epithelium lining the extrahepatic biliary ducts is derived from

- (A) mesoderm
- (B) endoderm
- (C) ectoderm
- (D) neuroectoderm
- (E) neural crest cells

7. A 4-day-old baby boy has not defecated since coming home from the hospital even though feeding has been normal without any excessive vomiting. Rectal examination reveals a normal anus, anal canal, and rectum. However, a large fecal mass is found in the colon, and a large release of flatus and feces follows the rectal examination. Which of the following conditions would be suspected?

- (A) Imperforate anus
- (B) Anal agenesis
- (C) Anorectal agenesis
- (D) Rectal atresia
- (E) Colonic aganglionosis

8. Which one of the following structures is derived from the midgut?

- (A) Appendix
- (B) Stomach
- (C) Liver
- (D) Pancreas
- (E) Sigmoid colon

9. A 3-month-old baby girl presents with a swollen umbilicus that has failed to heal normally. The umbilicus drains secretions, and there is passage of fecal material through the umbilicus at times. What is the most likely diagnosis?

- (A) Omphalocele
- (B) Gastroschisis
- (C) Anal agenesis
- (D) Ileal diverticulum
- (E) Intestinal stenosis

10. The midgut loop normally herniates through the primitive umbilical ring into the extraembryonic coelom during week 6 of development. Failure of the intestinal loops to return to the abdominal cavity by week 11 results in the formation of

- (A) omphalocele
- (B) gastroschisis
- (C) anal agenesis
- (**D**) ileal diverticulum
- (E) intestinal stenosis

11. Kupffer cells present in the adult liver are derived from

- (A) mesoderm
- (B) endoderm
- (C) ectoderm
- (D) neuroectoderm
- (E) neural crest cells

12. The simple columnar and stratified columnar epithelia lining the lower part of the anal canal is derived from

- (A) mesoderm
- (B) endoderm
- (C) ectoderm
- (D) neuroectoderm
- (E) neural crest cells

13. A baby born to a young woman whose pregnancy was complicated by polyhydramnios was placed in the intensive care unit because of repeated vomiting containing bile. The stomach was markedly distended, and only small amounts of meconium had passed through the anus. What is the most likely diagnosis?

- (A) Esophageal stenosis
- (B) Annular pancreas
- (C) Hypertrophic pyloric stenosis
- **(D)** Extrahepatic biliary atresia
- (E) Duodenal atresia

Answers and Explanations

- 1. B. Pancreatic islets form as isolated clumps of cells that bud from endodermal tubules.
- **2. D.** The baby is suffering from extrahepatic biliary atresia, which results from failure of the bile ducts to recanalize during development. This prevents bile from entering the duode-num.
- **3. C.** The baby is suffering from hypertrophic pyloric stenosis. This occurs when the smooth muscle in the pyloric region of the stomach hypertrophies and obstructs passage of food. The hypertrophied muscle can be palpated at the right costal margin. The exact cause of this condition is not known.
- **4. A.** The artery that supplies foregut derivatives of the digestive system is the celiac trunk. The celiac trunk consists of the left gastric artery, splenic artery, and common hepatic artery. The superior mesenteric artery supplies the midgut, and the inferior mesenteric artery supplies the hindgut.
- **5. C.** The most common type of malformation involving the anal canal and rectum is anorectal agenesis, in which the rectum ends as a blind sac above the puborectalis muscle. The anal canal may form normally but does not connect with the rectum. This malformation is accompanied by various fistulas.
- **6. B.** The epithelium lining the extrahepatic biliary ducts is derived from endoderm. The intrahepatic biliary ducts are also derived from endoderm.
- **7. E.** This baby boy suffers from colonic aganglionosis, or Hirschsprung disease, which results in the retention of fecal material, causing the normal colon to enlarge. The retention of fecal material results from a lack of peristalsis in the narrow segment of colon distal to the enlarged colon. A biopsy of the narrow segment of colon would reveal the absence of parasympathetic ganglion cells in the myenteric plexus caused by failure of neural crest migration.
- **8. A.** The appendix is derived from the midgut. The midgut normally undergoes a 270° counterclockwise rotation during development; malrotation of the midgut may result in the appendix lying in the upper part of the abdominal cavity, which may affect a diagnosis of appendicitis.
- **9. D**. This baby girl has an ileal diverticulum (Meckel's diverticulum), which occurs when a remnant of the vitelline duct persists. In this case, a fistula is present by which contents of the ileum can be discharged onto the surface of the skin.
- **10. A.** An omphalocele results when intestinal loops fail to return to the abdominal cavity. Instead, the intestinal loops remain in the umbilical cord covered by amnion.
- **11. A.** Kupffer cells are actually macrophages and are derived from mesoderm. Hepatocytes and the epithelial lining of the intrahepatic biliary tree are derived from endoderm.
- **12. C.** The anal canal is formed from two components—the hindgut and proctodeum. The epithelium lining the lower anal canal is derived from ectoderm lining the proctodeum.
- **13. E.** This baby is suffering from duodenal atresia at a level distal to the opening of the common bile duct. This causes a reflux of bile and its presence in the vomitus. The pregnancy was complicated by polyhydramnios because the duodenal atresia prevented passage of amniotic fluid into the intestines for absorption.

Respiratory System

I. UPPER RESPIRATORY SYSTEM

11

The upper respiratory system consists of the nose, nasopharynx, and oropharynx.

II. LOWER RESPIRATORY SYSTEM (FIGURE 11.1)

The lower respiratory system consists of the **larynx**, **trachea**, **bronchi**, and **lungs**. The first sign of development is the formation of the **respiratory diverticulum** in the ventral wall of the primitive foregut during week 4. The distal end of the respiratory diverticulum enlarges to form the **lung bud**. The lung bud divides into two **bronchial buds** that branch into the **main (primary)**, **lobar (sec-ondary)**, **segmental (tertiary)**, and **subsegmental bronchi**. The respiratory diverticulum initially is in open communication with the foregut, but eventually they become separated by indentations of mesoderm, the **tracheoesophageal folds**. When the tracheoesophageal folds fuse in the midline to form the **tracheoesophageal septum**, the foregut is divided into the tracheo ventrally and esophagus dorsally.

A. Development of the larynx. The opening of the respiratory diverticulum into the foregut becomes the laryngeal orifice. The laryngeal epithelium and glands are derived from endoderm. The laryngeal muscles are derived from somitomeric mesoderm of pharyngeal arches 4 and 6 and therefore are innervated by branches of the vagus nerve (cranial nerve [CN] X); i.e., the superior laryngeal nerve and recurrent laryngeal nerve, respectively. The laryngeal cartilages (thyroid, cricoid, arytenoid, corniculate, and cuneiform) are derived from somitomeric mesoderm of pharyngeal arches 4 and 6.

B. Development of the trachea

- **1. Sources.** The tracheal epithelium and glands are derived from endoderm. The tracheal smooth muscle, connective tissue, and C-shaped cartilage rings are derived from visceral mesoderm.
- 2. Clinical consideration. Tracheoesophageal fistula is an abnormal communication between the trachea and esophagus that results from improper division of foregut by the tracheoesophageal septum. It is generally associated with esophageal atresia and polyhy-dramnios. Clinical features include excessive accumulation of saliva or mucus in the nose and mouth; episodes of gagging and cyanosis after swallowing milk; abdominal distention after crying; and reflux of gastric contents into lungs, causing pneumonitis. Diagnostic features include inability to pass a catheter into the stomach and radiographs demonstrating air in the infant's stomach. There are five different anatomical types of esophagus and trachea malformations as follows:

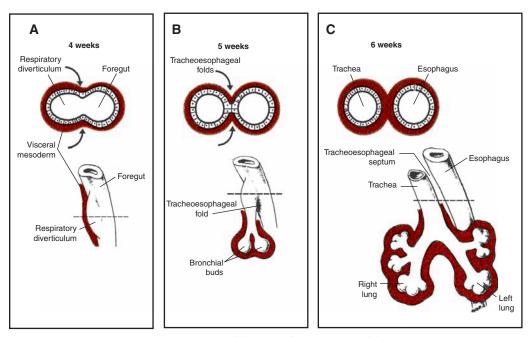
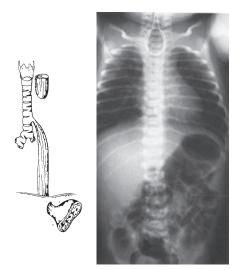



FIGURE 11.1. Development of respiratory system at (A) 4 weeks, (B) 5 weeks, and (C) 6 weeks. Both lateral views and cross-sectional views are shown. Note the relationship of the respiratory diverticulum and foregut. *Curved arrows* indicate the movement of the tracheoesophageal folds as the tracheoesophageal septum forms between the tracheo and esophagus.

a. Esophageal atresia with a tracheoesophageal fistula at the distal one-third end of the trachea (Figure 11.2). This is the most common type, occurring in 82% of cases. The anteroposterior (AP) radiograph in Figure 11.2 of this malformation shows an enteric tube (*arrow*) coiled in the upper esophageal pouch. The air in the bowel indicates a distal tracheoesophageal fistula.

FIGURE 11.2. Esophageal atresia with a tracheoesophageal fistula at the distal one-third end of the trachea.

136 BRS Embryology

b. Esophageal atresia only (Figure 11.3). This malformation occurs in 9% of cases.

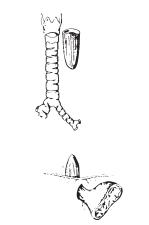


FIGURE 11.3. Esophageal atresia.

c. H-type tracheoesophageal fistula only (**Figure 11.4**). This malformation occurs in 6% of cases. The barium swallow radiograph in Figure 11.4 shows a normal esophagus (E), but dye has spilled into the trachea (T) through the fistula and outlines the upper trachea and larynx.

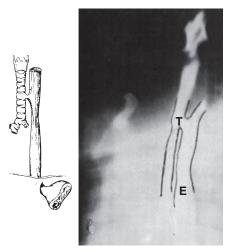


FIGURE 11.4. H-type tracheoesophageal fistula.

d. Esophageal atresia with a tracheoesophageal fistula at both proximal and distal ends (Figure 11.5). This malformation occurs in 2% of cases.

FIGURE 11.5. Esophageal atresia with a tracheoesophageal fistula at both proximal and distal ends.

e. Esophageal atresia with a tracheoesophageal fistula at the proximal end (Figure 11.6). This malformation occurs in 1% of cases.

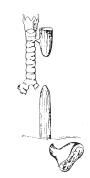
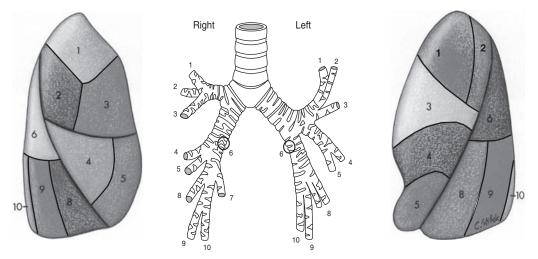



FIGURE 11.6. Esophageal atresia with a tracheoesophageal fistula at the proximal end.

C. Development of the bronchi (Figure 11.7)

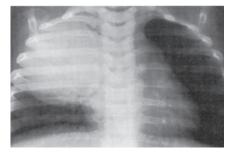
1. Stages of development

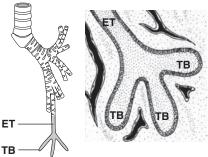
- a. The lung bud divides into two bronchial buds.
- b. In week 5 of development, bronchial buds enlarge to form main (primary) bronchi.
- **c**. The right main bronchus is larger and more vertical than the left main bronchus; this relationship persists throughout adult life and accounts for the greater likelihood of foreign bodies lodging on the right side than on the left.
- **d**. The main bronchi further subdivide into **lobar (secondary) bronchi** (three on the right side and two on the left side, corresponding to the lobes of the adult lung).
- **e.** The lobar bronchi further subdivide into **segmental (tertiary) bronchi** (10 on the right side and 9 on the left side), which further subdivide into **subsegmental bronchi**.
- **f**. The segmental bronchi are the primordia of the **bronchopulmonary segments**, which are morphologically and functionally separate respiratory units of the lung.
- **g**. As the bronchi develop, they expand laterally and caudally into a space known as the primitive pleural cavity.

FIGURE 11.7. Distribution of bronchopulmonary segments and their relationship to the tracheobronchial tree. Segmental bronchi of the right and left lungs are numbered. Right lung: 1, 2, 3 = segmental bronchi that branch from the upper lobar bronchus; 4, 5 = segmental bronchi that branch from the middle lobar bronchus; 6, 7, 8, 9, 10: segmental bronchi that branch from the lower lobar bronchus. Note that bronchopulmonary segment 7 is not represented on the outer costal surface of the right lung (7 is located on the inner mediastinal surface). Left lung: 1+2, 3, 4, 5: segmental bronchi that branch from the upper lobar bronchus; 6, 8, 9, 10: segmental bronchi that branch from the upper lobar bronchus; 6, 8, 9, 10: segmental bronchi that branch from the upper lobar bronchus; 6, 8, 9, 10: segmental bronchi that branch from the lower lobar bronchus. Note that there is number 7 segmental bronchus associated with the left lung.

- **h.** The visceral mesoderm covering the outside of the bronchi develops into **visceral pleura**, and somatic mesoderm covering the inside of the body wall develops into **parietal pleura**.
- i. The space between the visceral and parietal pleura is called the **pleural cavity**.
- **2. Sources.** The bronchial epithelium and glands are derived from endoderm. The bronchial smooth muscle, connective tissue, and cartilage are derived from visceral mesoderm.
- 3. Clinical considerations
 - **a. Bronchopulmonary segment** is a segment of lung tissue supplied by a segmental (tertiary) bronchus. Surgeons can resect diseased lung tissue along bronchopulmonary segments rather than remove the entire lobe.
 - b. Congenital lobar emphysema (CLE; Figure **11.8)** is characterized by progressive overdistention of one or the upper lobes or the right middle lobe with **air**. The term "emphysema" is a misnomer because there is no destruction of the alveolar walls. Although the exact etiology remains unknown, many cases involve **collapsed** bronchi due to failure of bronchial cartilage formation. In this situation, air can be inspired through collapsed bronchi but cannot be expired. During the first few days of life, fluid may be trapped in the involved lobe, producing an opaque, enlarged hemithorax. Later, the fluid is resorbed, and the classic radiological appearance of an emphysematous lobe with generalized radiolucency (hyperlucent) is apparent. The expiratory AP radiograph in Figure 11.8 shows a hyperlucent area in the emphysematous right upper lobe due to air trapping.
 - c. Congenital bronchogenic cysts (Figure 11.9) represent an abnormality in bronchial branching and may be found within the mediastinum (most commonly) or intrapulmonary. Intrapulmonary cysts are round, solitary, sharply marginated, and fluid filled and do not initially communicate with the tracheobronchial tree. Because intrapulmonary bronchogenic cysts contain fluid, they appear as waterdensity masses on chest radiographs. These cysts may become air filled as a result of infection or instrumentation. The AP radiograph in Figure 11.9 shows a large opaque area in the right upper lobe due to a fluid-filled cyst.

FIGURE 11.8. Congenital lobar emphysema.




FIGURE 11.9. Congenital bronchogenic cyst.

d. Bronchiectasis is the abnormal, permanent dilatation of bronchi due to chronic necrotizing infection (e.g., *Staphylococcus, Streptococcus, Haemophilus influenzae*), bronchial obstruction (e.g., foreign body, mucous plugs, or tumors), or congenital conditions (e.g., Kartagener syndrome, cystic fibrosis, immunodeficiency disorders).

The lower lobes of the lung are predominately affected, and the affected bronchi have a saccular appearance. Clinical signs include cough, fever, and expectoration of large amounts of foul-smelling purulent sputum. Bronchiectasis may also be classified to a group of disorders known as chronic obstructive pulmonary disease (COPD), which are characterized by increased resistance to airflow during both inspiration and expiration due to airway obstruction. Other members of COPD include emphysema, chronic bronchitis, and asthma.

E. Development of the lungs

- **1. Periods of development.** The lung matures in a proximal–distal direction, beginning with the largest bronchi and proceeding outward. As a result, lung development is heterogeneous; proximal pulmonary tissue will be in a more advanced period of development than distal pulmonary tissue.
 - a. Pseudoglandular period (weeks 7–16; Figure 11.10). During this period, the developing lung resembles an exocrine gland. The numerous endodermal tubules (ETs) are lined by simple columnar epithelium and are surrounded by mesoderm containing a modest capillary network. Each endodermal tubule branches into 15–25 terminal bronchioles (TBs). During this period, respiration is not possible, and premature infants cannot survive. The diagram in Figure 11.10 shows the lung in the pseudoglandular period.
 - b. Canalicular period (weeks 16–24; Figure 11.11). During this period, the TBs branch into three or more respiratory bronchioles (RBs). The respiratory bronchioles subsequently branch into three to six alveolar ducts (ADs). The terminal bronchioles, respiratory bronchioles, and alveolar ducts are now lined by a simple cuboidal epithelium and are surrounded by mesoderm containing a prominent capillary network. Premature infants born before week 20 rarely survive. The diagram in Figure 11.11 shows the lung in the canalicular period.
 - c. Terminal sac period (week 24 to birth; Figure 11.12). During this period, terminal sacs (TSs) bud off the ADs and then dilate and expand into the surrounding mesoderm. The terminal sacs are separated from each other by primary septae. The simple cuboidal epithelium within the terminal sacs differentiates into type | pneumocytes (thin, flat cells that make up part of the blood-air barrier) and type II pneumocytes (which produce surfactant). The terminal sacs are surrounded by mesoderm containing a rapidly proliferating capillary **network**. The capillaries make intimate contact with the terminal sacs and thereby establish a **blood-air barrier** with

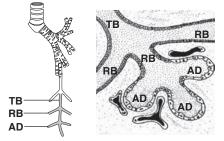
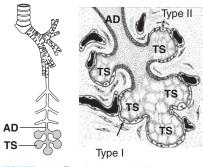
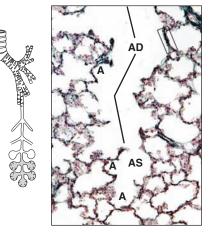


FIGURE 11.11. Canalicular period.




FIGURE 11.12. Terminal sac period.

the type I pneumocytes. **Premature infants born between week 25 and week 28 can survive with intensive care.** Adequate vascularization and surfactant levels are the most important factors for the survival of premature infants. The diagram in Figure 11.12 shows the lung in the terminal sac period.

d. Alveolar period (week 32–age 8 years; Figure 11.13). During this period, terminal sacs are partitioned by secondary septae to form adult alveoli. About 20–70 million alveoli are present at birth. About 300–400 million alveoli are present by 8 years of age. The major mechanism for the increase in the number of alveoli is formation of secondary septae that partition existing alveoli. After birth, the increase in the size of the lung is due to an increase in the number of respiratory bronchioles. On chest radiographs, lungs of a newborn infant are denser than an adult lung because of the fewer number of mature alveoli.

2. Clinical considerations

- a. Aeration at birth is the replacement of lung liquid with air in the newborn's lungs. In the fetal state, the functional residual capacity (FRC) of the lung is filled with liquid secreted by fetal lung epithelium via Cl⁻ transport using CFTR (cystic fibrosis transmembrane protein). At birth, lung liquid is eliminated by a reduction in lung liquid secretion via Na⁺ transport by type II pneumocytes and resorption into pulmonary capillaries (major route) and lymphatics (minor route). Lungs of a stillborn baby will sink when placed in water because they contain fluid rather than air.
- b. Respiratory distress syndrome (RDS; Figure 11.14).
 - i. RDS is caused by a deficiency or absence of **surfactant** that is produced by **type II pneumocytes**.
 - **ii.** This surface active agent is composed of **cholesterol** (50%), **dipalmi-toylphosphatidylcholine** (DPPC; 40%), and **surfactant proteins A, B, and C** (10%) and coats the inside of alveoli to maintain alveolar patency.
 - iii. RDS is prevalent in premature infants (accounts for 50%–70% of deaths in premature infants), infants of diabetic mothers, infants who experienced fetal asphyxia or maternofetal hemorrhage (damages type II pneumocytes), and multiple-birth infants.

FIGURE 11.13. Alveolar period. A = adult alveoli;AD = alveolar duct; AS = alveolar sac.

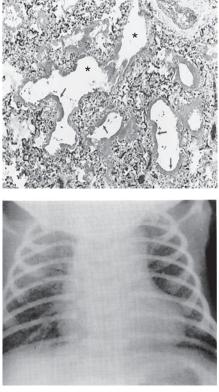


FIGURE 11.14. Respiratory distress syndrome (RDS).

- **iv.** Clinical signs include dyspnea, tachypnea, inspiratory retractions of chest wall, expiratory grunting, cyanosis, and nasal flaring.
- **v.** Treatments include administration of betamethasone (a corticosteroid) to the mother for several days before delivery (i.e., antenatal) to increase surfactant production, postnatal administration of an artificial surfactant solution, and postnatal high-frequency ventilation.
- vi. RDS in premature infants cannot be discussed without mentioning **germinal matrix hemorrhage (GMS)**. The germinal matrix is the site of proliferation of neuronal and glial precursors in the developing brain that is located above the caudate nucleus, in the floor of the lateral ventricles, and the caudal–thalamic groove. The germinal matrix also contains a rich network of fragile, thin-walled blood vessels.
- vii. The brain of the premature infant lacks the ability to autoregulate the cerebral blood pressure.
- viii. Consequently, increased arterial blood pressure in these blood vessels leads to rupture and hemorrhage into the germinal matrix. This leads to significant neurological sequelae, including cerebral palsy, mental retardation, and seizures.
- **ix**. Antenatal corticosteroid administration has a clear role in reducing the incidence of GMH is premature infants.
- **x.** The light micrograph in Figure 11.14 shows the pathological hallmarks of RDS, which are acinar atelectasis (i.e., collapse of the respiratory acinus, which includes the respiratory bronchioles, alveolar ducts, and alveoli), dilation of terminal bronchioles (shown by the asterisk), and deposition of an eosinophilic hyaline membrane material (*arrows*) that consists of fibrin and necrotic cells.
- **xi.** The AP radiograph in Figure 11.14 shows the radiological hallmarks of RDS, which are a bell-shaped thorax due to under-aeration and reticulogranularity of the lungs caused by acinar atelectasis.
- **c. Pulmonary agenesis** is the complete absence of a lung or a lobe and its bronchi. This is a rare condition caused by failure of bronchial buds to develop. Unilateral pulmonary agenesis is compatible with life.
- **d. Pulmonary aplasia** is the absence of lung tissue but the presence of a rudimentary bronchus.
- e. Pulmonary hypoplasia (PH) is a poorly developed bronchial tree with abnormal histology. PH classically involves the right lung in association with right-sided obstructive congenital heart defects. PH can also be found in association with congenital diaphragmatic hernia (i.e., herniation of abdominal contents into the thorax), which compresses the developing lung. PH can also be found in association with bilateral renal agenesis or Potter's syndrome, which causes an insufficient amount of amniotic fluid (oligohydramnios) to be produced, which in turn increases pressure on the fetal thorax.
- f. Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by >1000 mutations in the CFTR gene on chromosome 7q31.2 for the cystic fibrosis transmembrane conductance regulator, which functions as a chloride ion (Cl⁻) channel. CF is most commonly (approximately 70% of cases in the North American population) caused by a three-base pair deletion at the site that codes for the amino acid phenylalanine at position 508 (hence the mutation is called delta F508) of CFTR, such that phenylalanine is missing from the CFTR. However, there are a large number of deletions that can cause CF, and parents of an affected child can carry different deletions of CFTR. These mutations result in absent/near-absent CFTR synthesis, a block in CFTR regulation, or a destruction of Cl⁻ transport. Clinical features include production of abnormally thick mucus by epithelial cells lining the respiratory tract, resulting in obstruction of pulmonary airways, recurrent respiratory bacterial infections, and end-stage lung disease; pancreatic insufficiency with malabsorption; acute salt depletion; and chronic metabolic alkalosis. Males are almost always sterile due to the obstruction or absence of the vas deferens. Whites are the most commonly affected ethnic group, with CF occurring in 1 of 2500 live births.

Study Questions for Chapter 11

1. A young mother brings her recently born infant into your office and complains that the infant gags and chokes after swallowing milk. A physical examination indicates excessive saliva and mucus around the mouth and nose, abdominal distention, pneumonitis, and radiographs indicate air in the infant's stomach. What is the most likely cause?

- (A) Hypertrophic pyloric stenosis
- (B) Tracheoesophageal fistula
- (C) Congenital lobar emphysema
- (D) Respiratory distress syndrome
- (E) Pulmonary hypoplasia

2. Within hours after birth, a baby whose mother is diabetic had a rising respiratory rate and labored breathing. The baby became cyanotic and died. Postmortem histological examination revealed collapsed alveoli lined with eosinophilic material. What is the diagnosis?

- (A) Congenital emphysema
- (B) Respiratory distress syndrome
- (C) Cystic fibrosis
- **(D)** Tracheoesophageal fistula
- (E) Pulmonary carcinoma

3. The trachea is lined with pseudostratified ciliated columnar epithelium with goblet cells. This epithelium is derived from

- (A) neuroectoderm
- (B) endoderm
- (C) ectoderm
- (D) visceral mesoderm
- (E) mesoderm of fourth and sixth pharyngeal arches

4. Smooth muscle, connective tissue, and cartilage of primary bronchi are derived from which of the following sources?

- (A) Neuroectoderm
- (B) Endoderm
- (C) Ectoderm
- (D) Visceral mesoderm
- (E) Mesoderm of pharyngeal arches 4 and 6

5. Components of the blood–air barrier in the lung are derived from which of the following sources?

- (A) Ectoderm only
- (B) Visceral mesoderm only
- (C) Visceral mesoderm and ectoderm
- (D) Endoderm and ectoderm
- (E) Visceral mesoderm and endoderm

6. The respiratory diverticulum initially is in open communication with the primitive foregut. Which of the following embryonic structures is responsible for separating these two structures?

- (A) Laryngotracheal groove
- (B) Posterior esophageal folds
- (C) Laryngotracheal diverticulum
- (D) Tracheoesophageal septum
- (E) Bronchopulmonary segment

7. Collapse of bronchi caused by failure of bronchial cartilage development is indicative of which one of the following congenital malformations?

- (A) Congenital bronchial cysts
- (B) Congenital neonatal emphysema
- (C) Tracheoesophageal fistula
- (D) Hyaline membrane disease
- (E) Pulmonary hypoplasia

8. Pulmonary hypoplasia is commonly associated with which condition?

- (A) Hyaline membrane disease
- (B) Diaphragmatic hernia
- (C) Tracheoesophageal fistula
- **(D)** Congenital bronchial cysts
- (E) Congenital neonatal emphysema

9. Development of which of the following is the first sign of respiratory system development?

- (A) Tracheoesophageal septum
- (B) Hypobranchial eminence
- (C) Primitive foregut
- (D) Tracheoesophageal fistula
- (E) Respiratory diverticulum

10. In which stage of lung maturation is the blood–air barrier established?

- (A) Embryonic period
- **(B)** Pseudoglandular period
- (C) Canalicular period
- (**D**) Terminal sac period
- (E) Alveolar period

Answers and Explanations

- **1. B.** Tracheoesophageal fistula is an abnormal communication between the trachea and esophagus that results from an improper division of the foregut by the tracheoesophageal septum. It is generally associated with esophageal atresia and polyhydramnios.
- **2. B.** Respiratory distress syndrome is common in premature infants and infants of diabetic mothers. It is caused by a deficiency or absence of surfactant. Collapsed alveoli and eosinophilic material consisting of fibrin (hyaline membrane) can be observed histologically, indicating associated hyaline membrane disease.
- **3. B.** The epithelial lining of the entire respiratory system (from tracheal epithelium to type I pneumocytes lining alveoli) is derived from endoderm.
- **4. D**. The epithelium of primary bronchi is derived from endoderm; the other components are derived from visceral mesoderm.
- **5. E.** The blood–air barrier comprises the structures through which gaseous exchange occurs between air in alveoli and blood in pulmonary capillaries. The attenuated pulmonary epithelium (type I pneumocytes) is derived from endoderm. The simple, squamous epithelium (endothelium) lining pulmonary capillaries is derived from visceral mesoderm.
- **6. D**. When the tracheoesophageal folds fuse in the midline, they form the tracheoesophageal septum. This septum is responsible for separating the adult trachea ventrally from the esophagus dorsally.
- **7. B.** Congenital neonatal emphysema is a malformation involving the bronchi. One or more lobes of the lungs are overdistended with air because air can be inspired through collapsed bronchi but cannot be expired.
- **8. B.** During normal development, a space is provided for the prolific growth of the bronchial buds in a lateral and caudal direction. This space, which is part of the intraembryonic coelom, is called the primitive pleural cavity. If this space is reduced by herniation of abdominal viscera, lung development will be severely compromised.
- **9. E.** Development of the respiratory system begins in week 4; the first sign of development is formation of the respiratory diverticulum in the ventral wall of the primitive foregut.
- **10. D.** The simple cuboidal epithelium within the terminal sacs differentiates into pneumocytes within the terminal sac period. The rapidly proliferating capillary network makes intimate contact with the terminal sacs, and the blood–air barrier is established with type I pneumocytes. These events take place in the terminal sac period, which runs from embryonic week 24 until birth.

chapter 12 Head and Neck

I. PHARYNGEAL APPARATUS (FIGURE 12.1; TABLE 12.1)

The pharyngeal apparatus consists of the **pharyngeal arches**, **pharyngeal pouches**, **pharyngeal grooves**, and **pharyngeal membranes**, all of which contribute greatly to the formation of the head and neck. The pharyngeal apparatus is first observed in week 4 of development and gives the embryo its distinctive appearance. There are five pharyngeal arches (1, 2, 3, 4, and 6), four pharyngeal pouches (1, 2, 3, and 4), four pharyngeal grooves (1, 2, 3, and 4), and four pharyngeal membranes (1, 2, 3, and 4). Pharyngeal arch 5 and pharyngeal pouch 5 completely regress in the human. Aortic arch 5 also completely regresses (see Chapter 5). The **Hox complex** and **retinoic acid** appear to be important factors in early head and neck formation. A lack or excess of retinoic acid causes striking facial anomalies.

- A. Pharyngeal arches (1, 2, 3, 4, 6) contain somitomeric mesoderm and neural crest cells. In general, the mesoderm differentiates into muscles and arteries (i.e., aortic arches 1–6), whereas neural crest cells differentiate into bone and connective tissue. In addition, each pharyngeal arch has a cranial nerve associated with it.
- B. Pharyngeal pouches (1, 2, 3, 4) are evaginations of endoderm that lines the foregut.
- **C.** Pharyngeal grooves (1, 2, 3, 4) are invaginations of ectoderm located between each pharyngeal arch.
- **D.** Pharyngeal membranes (1, 2, 3, 4) are structures consisting of ectoderm, intervening mesoderm and neural crest, and endoderm located between each pharyngeal arch.

II. DEVELOPMENT OF THE THYROID GLAND

In the midline of the floor of the pharynx, the endodermal lining of the foregut forms the **thyroid diverticulum**. The thyroid diverticulum migrates caudally, passing ventral to the hyoid bone and laryngeal cartilages. During this migration, the thyroid remains connected to the tongue by the **thyroglossal duct**, which later is obliterated. The site of the thyroglossal duct is indicated in the adult by the **foramen cecum**.

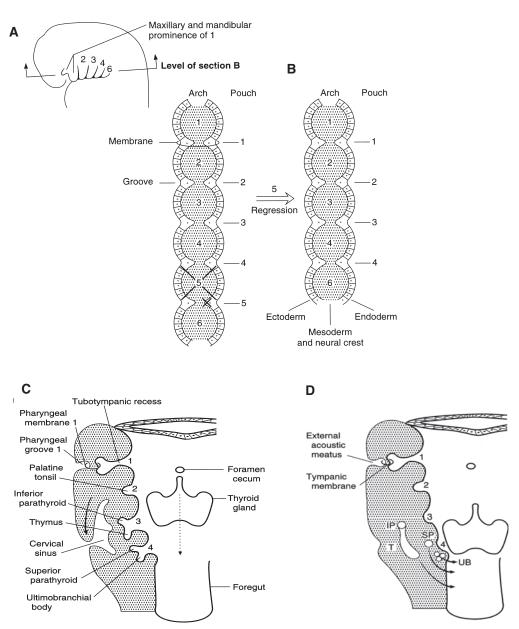
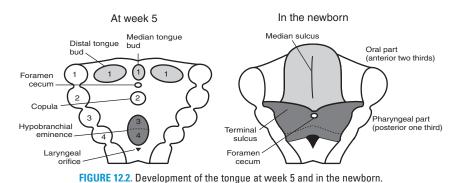


FIGURE 12.1. (A) Lateral view of an embryo in week 4 of development, showing the pharyngeal arches. Note that pharyngeal arch 1 consists of a maxillary prominence and a mandibular prominence, which can cause some confusion in numbering of the arches. (B) A schematic diagram indicating a convenient way to understand the numbering of the arches and pouches. The X's indicate regression of pharyngeal arch 5 and pouch 5. (C, D) Schematic diagrams of the fate of the pharyngeal pouches, grooves, and membranes. (C) Solid arrow indicates the downward growth of pharyngeal arch 2, thereby forming a smooth contour at the neck region. *Dotted arrow* indicates downward migration of the thyroid gland. (D) *Curved arrows* indicate the direction of migration of the inferior parathyroid (IP), thymus (T), superior parathyroid (SP), and ultimobranchial bodies (UB). Note that the parathyroid tissue derived from pharyngeal pouch 3 is carried farther caudally by the descent of the thymus than parathyroid tissue from pharyngeal pouch 4.


table	12.1 Adult Derivatives of	of Pharyngeal Arches, Pouches, Grooves, and Membranes
Arch	Nerve	Adult Derivatives
1	CN V	Mesoderm: Muscles of mastication, mylohyoid, anterior belly of digastric, tensor veli palatini, tensor tympani
		Neural crest from R1 and R2: Maxilla, mandible, incus, malleus, zygomatic bone, squamous temporal bone, palatine bone, vomer, sphenomandibular ligament, and Meckel's cartilage
2	CN VII	Mesoderm: Muscles of facial expression, posterior belly of digastric, stylohyoid, stapedius Neural crest from R4: Stapes, styloid process, stylohyoid ligament, lesser horn and upper body of hyoid bone, and Reichert's cartilage
3	CN IX	Mesoderm: Stylopharyngeus, common carotid arteries, internal carotid arteries
		Neural crest from R6 and R7: Greater horn and lower body of hyoid bone
4	CN X (superior laryngeal nerve)	Mesoderm: Muscles of soft palate (except tensor veli palatini), muscles of the pharynx (except stylopharyngeus) cricothyroid,
		cricopharyngeus, laryngeal cartilages, right subclavian artery, arch of aorta
		Neural crest: none
6	CN X (recurrent laryngeal nerve)	Mesoderm: Intrinsic muscles of larynx (except cricothyroid), upper muscles of the esophagus, laryngeal cartilages, pulmonary arteries, ductus arteriosus
		Neural crest: none
Pouch		
1		Epithelial lining of auditory tube and middle ear cavity, and mastoid air cells
2		Epithelial lining of palatine tonsil crypts
3		Inferior parathyroid gland
4		Thymus Superior conthursid shard
4		Superior parathyroid gland Ultimobranchial body²
Groove		olumobraticital body
1		Epithelial lining of the external auditory meatus
2,3,4		Obliterated
Membrane		
1		Tympanic membrane
2,3,4		Obliterated

^aNeural crest cells migrate into the ultimobranchial body to form parafollicular cells (C cells) of the thyroid, which secrete calcitonin.

III. DEVELOPMENT OF THE TONGUE (FIGURE 12.2)

A. Oral part (anterior two thirds) of the tongue

- **1.** The oral part of the tongue forms from the **median tongue bud** and **two distal tongue buds** that develop in the floor of the pharynx associated with **pharyngeal arch 1**.
- **2.** The distal tongue buds overgrow the median tongue bud and fuse in the midline, forming the **median sulcus**.
- 3. The oral part is characterized by filiform papillae (no taste buds), fungiform papillae (taste buds present), foliate papillae (taste buds present), and circumvallate papillae (taste buds present).
- 4. General sensation from the mucosa is carried by the lingual branch of the trigeminal nerve (cranial nerve [CN] V).
- 5. Taste sensation from the mucosa is carried by the chorda tympani branch of the facial nerve (CN VII). Special visceral afferent (SVA) neurons convey taste sensation from the anterior two thirds of the tongue to the central nervous system. The cell bodies for these neurons lie in the geniculate ganglion. The peripheral processes "hitch a ride" with the lingual nerve and chorda tympani nerve. The central processes enter the brain stem via the intermediate nerve and terminate in the rostral portion of the solitary nucleus.

B. Pharyngeal part (posterior one third) of the tongue

- 1. The pharyngeal part of the tongue forms from the **copula** and **hypobranchial eminence** that develops in the floor of the pharynx associated with **pharyngeal arches 2, 3, and 4**.
- **2.** The hypobranchial eminence overgrows the copula, thereby eliminating any contribution of pharyngeal arch 2 in the formation of the definitive adult tongue.
- **3.** The line of fusion between the oral and pharyngeal parts of the tongue is indicated by the **terminal sulcus**.
- **4.** The pharyngeal part is characterized by the **lingual tonsil**, which forms along with the palatine tonsil and pharyngeal tonsil (adenoids) **Waldeyer's ring**.
- 5. General sensation from the mucosa is carried primarily by the glossopharyngeal nerve (CN IX).
- **6.** Taste sensation from the mucosa is carried predominantly by the **glossopharyngeal nerve** (CN IX).

C. Muscles of the tongue

- **1.** The intrinsic muscles and extrinsic muscles (styloglossus, hyoglossus, genioglossus, and palatoglossus) are derived from myoblasts that migrate into the tongue region from **occipital somites**.
- **2.** Motor innervation is supplied by the **hypoglossal nerve (CN XII)**, except for palatoglossus muscle, which is innervated by CN X.

IV. DEVELOPMENT OF THE FACE (FIGURE 12.3)

- **A.** The face is formed by three swellings: the **frontonasal prominence**, **maxillary prominence** (pharyngeal arch 1), and **mandibular prominence** (pharyngeal arch 1).
- **B**. Bilateral ectodermal thickenings called **nasal placodes** develop on the ventrolateral aspects of the frontonasal prominence.

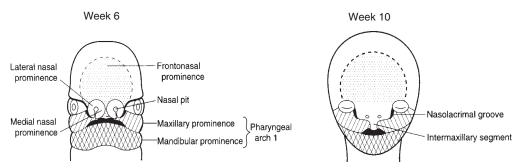


FIGURE 12.3. Development of the face at weeks 6 and 10.

- **C.** The nasal placodes invaginate into the underlying mesoderm to form the **nasal pits**, thereby producing a ridge of tissue that forms the **medial nasal prominence** and **lateral nasal prominence**.
- **D.** A deep groove called the **nasolacrimal groove** forms between the maxillary prominence and the lateral nasal prominence and eventually forms the **nasolacrimal duct** and **lacrimal sac**.

V. DEVELOPMENT OF THE PALATE (FIGURE 12.4)

A. Intermaxillary segment

- **1.** The intermaxillary segment forms when the medial growth of the maxillary prominences causes the two medial nasal prominences to fuse together at the midline.
- 2. The intermaxillary segment forms the philtrum of the lip, four incisor teeth, and primary palate.

B. Secondary palate

- **1.** The secondary palate forms from outgrowths of the maxillary prominences called the **palatine shelves**.
- Initially the palatine shelves project downward on either side of the tongue but later attain a horizontal position and fuse along the palatine raphe to form the secondary palate.

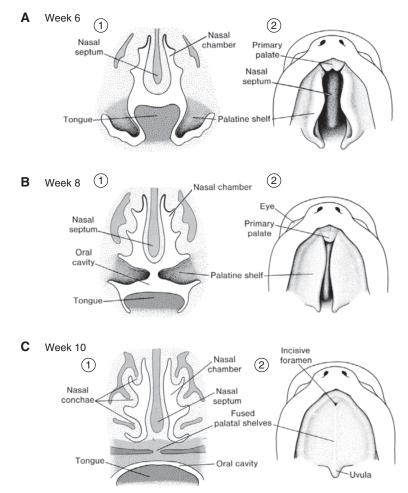


FIGURE 12.4. Development of the palate at weeks 6, 8, and 10. (1) Horizontal sections. (2) Roof of the mouth.

- **3.** The primary and secondary palate fuse at the **incisive foramen** to form the **definitive palate**.
- **4.** Bone develops in both the primary palate and anterior part of the secondary palate. Bone does not develop in the posterior part of the secondary palate, which eventually forms the **soft palate** and **uvula**.
- **5.** The **nasal septum** develops from the medial nasal prominences and fuses with the definitive palate.

VI. DEVELOPMENT OF THE MOUTH

- **A.** The mouth is formed from a surface depression called the **stomodeum**, which is lined by ectoderm, and the **cephalic end of the foregut**, which is lined by endoderm.
- B. The stomodeum and foregut meet at the **oropharyngeal membrane**.
- **C.** The epithelium of the **oral part of the tongue**, **hard palate**, **sides of the mouth**, **lips**, **parotid gland and ducts**, **Rathke's pouch**, and **enamel of the teeth** are derived from ectoderm.
- **D.** The epithelium of the **pharyngeal part of the tongue**, floor of the mouth, **palatoglossal fold**, **palatopharyngeal fold**, **soft palate**, **sublingual gland and ducts**, and **submandibular gland and ducts** are derived from endoderm.

VII. DEVELOPMENT OF THE NASAL CAVITIES

- **A**. The nasal placodes deepen considerably to form the nasal pits and finally the **nasal sacs**.
- **B**. The nasal sacs remain separated from the oral cavity by the **oronasal membrane**, but it soon ruptures; the nasal cavities and oral cavity are then continuous via the **primitive choanae**.
- **C**. Swellings in the lateral wall of each nasal cavity form the **superior**, **middle**, **and inferior conchae**.
- **D.** In the roof of each nasal cavity, the ectoderm of the nasal placode forms a thickened patch—the **olfactory epithelium**.
- **E.** Olfactory epithelium contains **sustentacular cells**, **basal cells**, and **ciliated cells**. These ciliated cells are bipolar neurons that give rise to the **olfactory nerve (CN I)**, have a lifespan of 1–2 months, and are continuously regenerated.

VIII. CLINICAL CONSIDERATIONS

- A. First arch syndrome (Figure 12.5) results from abnormal development of **pharyngeal arch 1** and produces various facial anomalies. It is caused by a lack of migration of neural crest cells into pharyngeal arch 1. Two well-described first arch syndromes are Treacher Collins syndrome (mandibulofacial dysostosis) and Pierre Robin syndrome. Treacher Collins syndrome is an autosomal dominant genetic disorder caused by a mutation in the TCOF1 gene on chromosome 5q32-q33.1 for the treacle protein. The treacle protein is a nucleolar protein that seems to be involved in microtubule dynamics. Clinical features include hypoplasia of the zygomatic bones and mandible, resulting in midface hypoplasia, micrognathia, and retrognathia; external ear abnormalities, including small, absent, malformed, or rotated ears; and lower eyelid abnormalities, including coloboma. The photograph in Figure 12.5 shows a young boy with Treacher Collins syndrome. Note the hearing aid cord.
- **B.** Pharyngeal fistula (Figure 12.6) occurs when pharyngeal pouch 2 and pharyngeal groove 2 persist, thereby forming a patent opening from the internal tonsillar area to the external neck. It is generally found along the **anterior border of the sternocleidomastoid muscle**. In Figure 12.6 the radiograph after injection of a contrast medium demonstrates the course of the fistula through the neck (*arrow*). The fistula may begin inside the throat near the tonsils, travel through the neck, and open to the outside near the anterior border of the sternocleidomastoid muscle.
- **C. Pharyngeal cyst (Figure 12.7)** occurs when parts of the **pharyngeal grooves 2, 3, and 4** that are normally obliterated persist, thereby forming a cyst. It is generally found near the **angle of the mandible**. The photograph in Figure 12.7 shows a fluid-filled cyst (*dotted circle*) near the angle of the mandible (*arrow*).

FIGURE 12.5. Treacher Collins syndrome (mandibulofacial dysostosis).

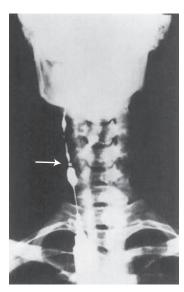


FIGURE 12.6. Pharyngeal fistula.

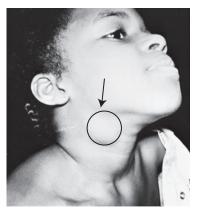


FIGURE 12.7. Pharyngeal cyst.

152 BRS Embryology

D. Ectopic thymus, parathyroid, or thyroid tissue (Figure 12.8) result from the abnormal migration of these glands from their embryonic position to their definitive adult location. Glandular tissue may be found anywhere along their migratory path. The photograph in Figure 12.8 shows a sublingual thyroid mass (*dotted circle*) in a 5-year old euthyroid girl. The [^{99M}Tc]pertechnetate scan localizes the position and the extent of the sublingual thyroid gland. There is no evidence of functioning thyroid tissue in the lower neck (i.e., in the normal anatomical position).

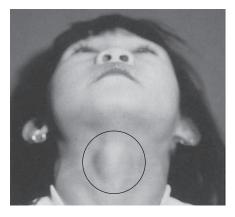


FIGURE 12.8. Ectopic thyroid tissue.

E. Thyroglossal duct cyst (Figure 12.9) occurs when parts of the thyroglossal duct persist and thereby form a cyst. It is most commonly located in the midline near the hyoid bone, but it may also be located at the base of the tongue, when it is then called a **lingual cyst**. The top photograph in Figure 12.9 shows a **thyroglossal duct cyst** (*arrow*), which is one of the most frequent congenital anomalies in the neck and is found along the midline most frequently below the hyoid bone. The MRI shows a **lingual cyst** consisting of a mass of thyroid tissue (*arrow*) at the base of the tongue.

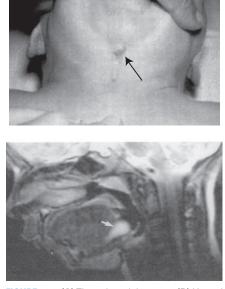


FIGURE 12.9. (A) Thyroglossal duct cyst. (B) Lingual cyst.

- F. Congenital hypothyroidism (cretinism; Figure 12.10) occurs when a thyroid deficiency exists during the early fetal period due to a severe lack of dietary iodine, thyroid agenesis, or mutations involving the biosynthesis of thyroid hormone. This condition causes impaired skeletal growth and mental retardation. This condition is characterized by dry, rough skin, wide-set eyes, periorbital puffiness, a flat, broad nose, and large, protuberant tongue. The photograph in Figure 12.10 shows a child with impaired skeletal growth and mental retardation. Note the dry, rough skin (myxedema) and protuberant tongue.
- **G. Cleft palate** has multifactorial causes, including neural crest cell participation. It is classified as anterior or posterior. The anatomical landmark that separates anterior from posterior cleft palate defects is the incisive foramen.
 - **1. Anterior cleft palate** occurs when the palatine shelves fail to fuse with the primary palate.
 - **2. Posterior cleft palate** occurs when the palatine shelves fail to fuse with each other and with the nasal septum.
 - **3. Anteroposterior cleft palate** occurs when there is a combination of both defects.
- H. Cleft lip (Figure 12.11) has multifactorial causes, including neural crest cells participation. Cleft lip and cleft palate are distinct malformations based on their embryological formation, even though they often occur together. They may occur unilaterally or bilaterally. Unilateral cleft lip is the most common congenital malformation of the head and neck. It results from the following:
 - **1.** The maxillary prominence fails to fuse with the medial nasal prominence.
 - **2.** The underlying somitomeric mesoderm and neural crest fail to expand, resulting in a **persistent labial groove**. The photograph in Figure 12.11 shows a child with a cleft palate and a unilateral cleft lip.

FIGURE 12.10. Congenital hypothyroidism (cretinism).

FIGURE 12.11. Unilateral cleft lip and cleft palate.

- I. DiGeorge syndrome (DS; "catch 22"; 22q11 syndrome) is caused by a microdeletion of a region in chromosome 22q11.2 that is also called the *DiGeorge chromosomal region*. This results in the failure of pharyngeal pouches 3 and 4 to differentiate into the thymus and parathyroid glands. DS is usually accompanied by facial anomalies resembling first arch syndrome (micrognathia, low-set ears) due to abnormal neural crest cell migration, cardiovascular anomalies due to abnormal neural crest cell migration of the aorticopulmonary septum, immunod-eficiency due to the absence of the thymus gland, and hypocalcemia due to the absence of parathyroid glands.
- J. Ankyloglossia ("tongue-tie") occurs when the frenulum of the tongue extends to the tip of the tongue, thereby preventing protrusion.

Study Questions for Chapter 12

1. The most common site of a thyroglossal cyst is

- (A) dorsal aspect of the neck
- (B) anterior border of the sternocleidomastoid muscle
- (C) superior mediastinum
- (D) midline close to the hyoid bone
- (E) base of the tongue

2. Taste sensation from the oral part (anterior two thirds) of the tongue is predominantly carried by

- (A) trigeminal nerve (CNV)
- (B) chorda tympani branch of the facial nerve (CN VII)
- (C) glossopharyngeal nerve (CN IX)
- (D) superior laryngeal branch of the vagus nerve (CN X)
- (E) recurrent laryngeal branch of the vagus nerve (CN X)

3. The intermaxillary segment forms via the fusion of the

- (A) maxillary prominences
- (B) mandibular prominences
- (C) palatine shelves
- **(D)** lateral nasal prominences
- (E) medial nasal prominences

4. The most common site of a pharyngeal fistula is the

- (A) dorsal aspect of neck
- (B) anterior border of sternocleidomastoid muscle
- (C) superior mediastinum
- (D) midline close to the hyoid bone
- (E) base of the tongue

5. What is the most common congenital malformation of the head and neck region?

- (A) Anterior cleft palate
- (B) Posterior cleft palate
- (C) Thyroglossal duct cyst
- (D) Unilateral cleft lip
- (E) Ankyloglossia

6. Which pharyngeal arch is associated with Treacher Collins syndrome?

- (A) Pharyngeal arch 1
- (B) Pharyngeal arch 2
- (C) Pharyngeal arch 3
- (D) Pharyngeal arch 4
- (E) Pharyngeal arch 6

7. During surgery for the removal of a thyroid tumor, a number of small masses of glandular tissue are noted just lateral to the thyroid gland. Metastasis from the thyroid tumor is suspected, but histological analysis of a biopsy reveals parathyroid tissue and remnants of thymus. How can this finding be explained?

- (A) Tumor tissue has differentiated into normal tissue
- (B) A parathyroid gland tumor is also present
- **(C)** Ectopic glandular tissue is commonly found in this region
- (D) The patient has DiGeorge syndrome
- (E) The glandular tissue is a result of a thyroglossal duct cyst

8. A newborn presents with midfacial and mandibular hypoplasia, defects of the first pharyngeal arch consistent with the diagnosis of Treacher Collins syndrome. What structure would most likely be involved with the syndrome?

- (A) Hyoid bone
- (B) Stapes
- (C) Malleus
- (D) Thyroid gland
- (E) Inferior parathyroid gland

Answers and Explanations

- **1. D**. The thyroid gland forms from a diverticulum in the midline of the floor of the pharynx. The thyroid migrates caudally and passes ventral to the hyoid bone. During this migration, the thyroid remains connected to the tongue by the thyroglossal duct. If a part of the thyroglossal duct persists, a cyst will develop, usually near the hyoid bone.
- **2. B.** Taste sensation from the mucosa for the oral part of the tongue is carried by the chorda tympani branch of the facial nerve (CN VII). This part of the tongue forms from pharyngeal arch 1, so the trigeminal nerve (CN V) will carry sensory innervation from the mucosa.
- **3. E**. The intermaxillary segment, which plays a critical role in the formation of the definitive adult palate, forms when the two medial nasal prominences fuse in the midline.
- **4. B.** A pharyngeal fistula forms when pharyngeal pouch 2 and pharyngeal groove 2 persist. Therefore, these fistulas are found on the lateral aspect of the neck, usually along the anterior border of the sternocleidomastoid muscle.
- **5. D**. Unilateral cleft lip is the most common congenital malformation of the head and neck. Cleft lip occurs when the maxillary prominences fail to fuse with the medial nasal prominences and when the underlying somitomeric mesoderm and neural crest fail to proliferate, resulting in a persistent labial groove. Cleft lip occurs in 1 of 900 births and may be unilateral or bilateral.
- **6. A.** First arch syndrome results from abnormal development of pharyngeal arch 1 due to a lack of migration of neural crest cells. Treacher Collins syndrome is associated with under-development of the zygomatic bone, down-slanting palpebral fissures, and deformed lower eyelids and external ears.
- **7. C.** The parathyroid and thymus migrate in a caudal and medial direction during development; therefore, ectopic glandular tissue may be found anywhere along the migratory path.
- **8. C.** The malleus is the only structure on this list derived from the neural crest of the first pharyngeal arch.

chapter **13** Urinary System

I. OVERVIEW (FIGURE 13.1)

The **intermediate mesoderm** forms a longitudinal elevation along the dorsal body wall called the **urogenital ridge**. A portion of the urogenital ridge forms the **nephrogenic cord**, which gives rise to the urinary system. The nephrogenic cord develops into three sets of nephric structures: the **pronephros**, the **mesonephros**, and the **metanephros**.

- **A. The pronephros** develops by the differentiation of mesoderm within the nephrogenic cord to form **pronephric tubules** and the **pronephric duct**. The pronephros is the cranial-most nephric structure and is a transitory structure that regresses completely by week 5. The pronephros is not functional in humans.
- **B.** The mesonephros develops by the differentiation of mesoderm within the nephrogenic cord to form **mesonephric tubules** and the **mesonephric duct (Wolffian duct)**. The mesonephros is the middle nephric structure and is a partially transitory structure. Most of the mesonephric tubules regress, but the mesonephric duct persists and opens into the urogenital sinus. The mesonephros is functional for a short period.
- **C.** The metanephros develops from an outgrowth of the mesonephric duct (called the **ureteric bud**) and from a condensation of mesoderm within the nephrogenic cord called the **metanephric mesoderm**. The metanephros is the caudal-most nephric structure. The metanephros begins to form at week 5 and is functional in the fetus at about week 10. The metanephros develops into the **definitive adult kidney**. The fetal kidney is divided into lobes, in contrast to the definitive adult kidney, which has a smooth contour.

II. DEVELOPMENT OF THE METANEPHROS (FIGURE 13.2)

- A. Development of the collecting system. The ureteric bud is an outgrowth of the mesonephric duct. This outgrowth is regulated by WT-1 (an anti-oncogene), GDNF (glial cell line–derived neurotrophic factor), and c-Ret (a tyrosine kinase receptor). The ureteric bud initially penetrates the metanephric mesoderm and then undergoes repeated branching to form the ureters, renal pelvis, major calyces, minor calyces, and collecting ducts.
- B. Development of the nephron. The inductive influence of the collecting ducts causes the metanephric mesoderm to differentiate into metanephric vesicles, which later give rise to primitive S-shaped renal tubules, which are critical to nephron formation. The S-shaped renal tubules differentiate into the connecting tubule, distal convoluted tubule, loop of Henle, proximal convoluted tubule, and Bowman's capsule. Tufts of capillaries called glomeruli protrude

157

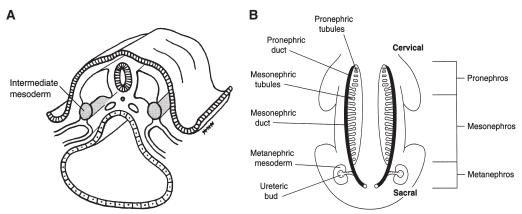


FIGURE 13.1. (A) Cross-sectional view of an embryo at week 4, illustrating the intermediate mesoderm as a cord of mesoderm that extends from the cervical to sacral levels that forms the urogenital ridge and nephrogenic cord. (B) Frontal view of an embryo, depicting the pronephros, mesonephros, and metanephros. Note that nephric structures develop from cervical through sacral levels.

into Bowman's capsule. Nephron formation is complete at birth, but functional maturation of nephrons continues throughout infancy.

- **C.** Tissue sources
 - 1. The transitional epithelium lining the ureter, pelvis, major calyx, and minor calyx and the simple cuboidal epithelium lining the collecting tubules are derived from mesoderm of the ureteric bud.
 - **2.** The simple cuboidal epithelium lining the connecting tubule and distal convoluted tubule, the simple squamous epithelium lining the loop of Henle, the simple columnar epithelium lining the proximal convoluted tubule, and the podocytes and simple squamous epithelium lining Bowman's capsule are derived from metanephric mesoderm.

III. RELATIVE ASCENT OF THE KIDNEYS (FIGURE 13.3)

- A. The fetal metanephros is located at vertebral level **S1–S2**, whereas the definitive adult kidney is located at vertebral level **T12–L3**.
- **B.** The change in location results from a disproportionate growth of the embryo caudal to the metanephros.
- **C.** During the relative ascent, the kidneys **rotate 90°**, causing the hilum, which initially faces ventrally, to finally face medially.

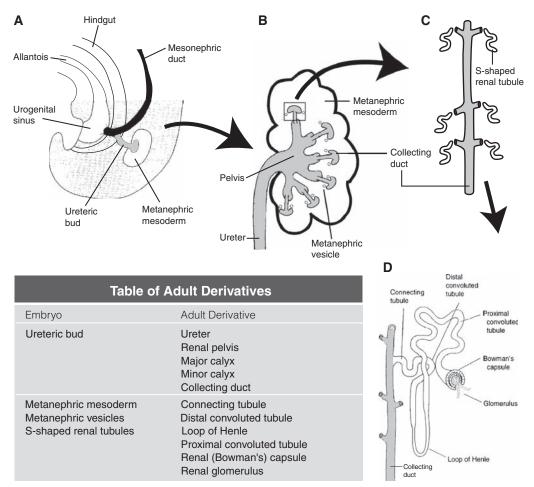
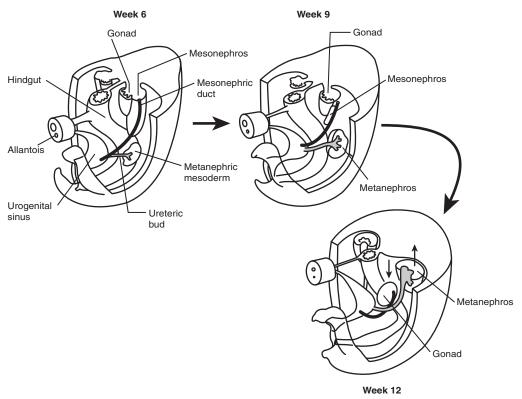



FIGURE 13.2. (A) Lateral view of the embryo showing the relationship between the ureteric bud (*shaded*), metanephric mesoderm, and mesonephric duct (*black*). In addition, note the urogenital sinus, hindgut, and allantois. (B) Lateral view of a fetal kidney. Shaded area indicates structures formed from the ureteric bud. Note the repeated branching of the ureteric bud into the metanephric mesoderm. At the tip of the each collecting duct, the formation of metanephric vesicles is induced. Note the lobulated appearance of a fetal kidney. (C) Enlarged view of the rectangle shown in panel B, illustrating the further branching of a collecting duct (*shaded*) and the formation of primitive S-shaped renal tubules. (D) A collecting duct and the components of a mature adult nephron. A summary table of derivatives is shown.

IV. BLOOD SUPPLY OF THE KIDNEYS

- **A**. During the relative ascent of the kidneys, they will receive their blood supply from arteries at progressively higher levels until the definitive renal arteries develop at **L2**.
- B. Arteries formed during the ascent may persist and are called supernumerary arteries.
- **C.** Supernumerary arteries are **end arteries**. Therefore, any damage to them will result in necrosis of kidney parenchyma.

FIGURE 13.3. Relative ascent of the kidneys. The relationships among the gonad, mesonephros, and metanephros during development at weeks 6, 9, and 12. Note that the gonad descends (*arrow*) while the metanephros ascends (*arrow*).

V. DEVELOPMENT OF THE URINARY BLADDER (FIGURE 13.4)

- **A**. The urinary bladder is formed from the upper portion of the **urogenital sinus**, which is continuous with the **allantois**.
- **B.** The allantois becomes a fibrous cord called the **urachus** (or **median umbilical ligament** in the adult).
- **C.** The lower ends of the mesonephric ducts become incorporated into the posterior wall of the bladder to form the **trigone of the bladder**.
- D. The mesonephric ducts eventually open into the urogenital sinus below the bladder.
- **E.** The **transitional epithelium** lining the urinary bladder is derived from endoderm because of its etiology from the urogenital sinus and gut tube.

VI. DEVELOPMENT OF THE FEMALE URETHRA (FIGURE 13.4)

- A. The female urethra is formed from the lower portion of the urogenital sinus.
- **B.** The female urethra develops endodermal outgrowths into the surrounding mesoderm to form the **urethral glands** and **paraurethral glands of Skene** (which are homologous to the prostate gland in the male).

- C. The paraurethral glands of Skene open on each side of the external urethral orifice.
- **D**. The female urethra ends at **navicular fossa**, which empties into the **vestibule of the vagina**, which also forms from the urogenital sinus.
- **E**. The vestibule of the vagina develops endodermal outgrowths into the surrounding mesoderm to form the **lesser vestibular glands** and **greater vestibular glands of Bartholin** (which are homologous to the bulbourethral glands of Cowper in the male).
- F. The greater vestibular glands of Bartholin open on each side of the vaginal orifice.
- **G.** The transitional epithelium and stratified squamous epithelium lining the female urethra are derived from endoderm.

VII. DEVELOPMENT OF THE MALE URETHRA (FIGURE 13.4)

A. Prostatic urethra, membranous urethra, bulbous urethra, and **proximal part of penile urethra.** These parts of the urethra are formed from the lower portion of the urogenital sinus. The transitional epithelium and stratified columnar epithelium lining these parts of the urethra are derived from endoderm.

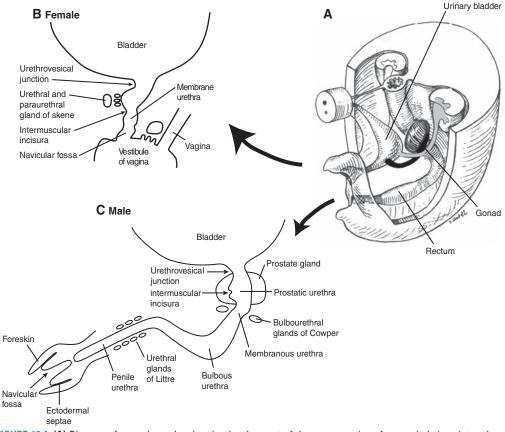
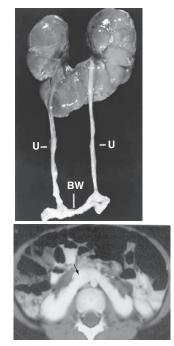


FIGURE 13.4. (A) Diagram of an embryo showing the development of the upper portion of urogenital sinus into urinary bladder and the lower portion into the female and male urethra. (B) Female urethra. The bladder, membranous portion of the female urethra, and navicular fossa are shown emptying into the vestibule of the vagina. In addition, the urethrovesical junction and intermuscular incisura are shown. (C) Male urethra. The bladder, prostatic urethra, membranous urethra, bulbous urethra, proximal part of the penile urethra, and navicular fossa are shown. In addition, the urethrovesical junction and intermuscular incisura are shown.


- 1. The prostatic urethra develops endodermal outgrowths into the surrounding mesoderm to form the prostate gland. The posterior wall of the prostatic urethra has an elevation called the urethral crest. The prostatic sinus is a groove on either side of the urethral crest that receives most of the prostatic ducts from the prostate gland. At a specific site along the urethral crest, there is an ovoid enlargement called the seminal colliculus (also called the verumontanum), which contains the openings of the ejaculatory ducts and the prostatic utricle (a vestigial remnant of the paramesonephric ducts in the male that is involved in the development of the vagina and uterus).
- 2. The membranous urethra develops endodermal outgrowths into the surrounding mesoderm to form the bulbourethral glands of Cowper.
- 3. The bulbous urethra contains the openings of the bulbourethral glands of Cowper.
- 4. The proximal part of the penile urethra develops endodermal outgrowths into the surrounding mesoderm to form urethral glands of Littre.
- **B.** Distal part of the penile urethra is formed from an ingrowth of surface ectoderm called the glandular plate. The glandular plate joins the proximal penile urethra and becomes canalized to form the navicular fossa. Ectodermal septa appear lateral to the navicular fossa and become canalized to form the foreskin. The stratified squamous epithelium lining of the distal penile urethra is derived from ectoderm.

VIII. CLINICAL CONSIDERATIONS

- **A. Renal agenesis** occurs when the ureteric bud fails to develop, thereby eliminating the induction of metanephric vesicles and nephron formation.
 - **1. Unilateral renal agenesis** is relatively common (more common in males). Therefore, a physician should never assume a patient has two kidneys. It is asymptomatic and compatible with life because the remaining kidney hypertrophies.
 - **2. Bilateral renal agenesis** is relatively uncommon. It causes oligohydramnios, which causes compression of the fetus, resulting in **Potter syndrome** (deformed limbs, wrinkly skin, and abnormal facial appearance). These infants are usually stillborn or die shortly after birth.
- **B. Renal hypoplasia** occurs when there is a congenitally small kidney with no pathological evidence of dysplasia.
- **C. Renal dysplasia** occurs when there is a disorganization of renal parenchyma with abnormally developed and immature nephrons.
- D. Renal ectopia occurs when one or both kidneys fail to ascend and therefore remain in the pelvis or lower lumbar area (i.e., pelvic kidney). In some cases, two pelvic kidneys fuse to form a solid mass, commonly called a pancake kidney.

162 BRS Embryology

E. Renal fusion (Figure 13.5). The most common type of renal fusion is the **horseshoe kidney**. A horseshoe kidney occurs when the inferior poles of the kidneys fuse across the midline. Normal ascent of the kidneys is arrested because the fused portion gets trapped behind the **inferior mesenteric artery**. Kidney rotation is also arrested, so that the hilum faces ventrally. The photograph in Figure 13.5 shows a horseshoe kidney. The computed tomography (CT) scan shows a band of renal tissue (*arrow*) that extends across the midline.

FIGURE 13.5. Horseshoe kidney. U = ureter; BW = bladder wall.

F. Renal artery stenosis (Figure 13.6) is the most common cause of renovascular hypertension in children. The stenosis may occur in the main renal artery of segmental renal arteries. The angiogram in Figure 13.6 shows bilateral renal artery stenosis (*arrows*).

FIGURE 13.6. Renal artery stenosis.

Chapter 13 Urinary System

G. Ureteropelvic junction obstruction (UPJ; Figure 13.7) occurs when there is an obstruction to the urine flow from the renal pelvis to the proximal ureter. UPJ is the most common congenital obstruction of the urinary tract. If there is severe uteropelvic atresia, a **multicystic dysplastic kidney** is found in which the cysts are actually dilated calyces. In this case, the kidney consists of grapelike, smooth-walled cysts of variable size. Dysplastic glomeruli and atrophic tubules are found between the cysts. The photograph in Figure 13.7 shows numerous cysts within the kidney. The sonogram shows many anechoic cysts (C) separated by renal septae.

FIGURE 13.7. Multidysplastic kidney.

H. Childhood polycystic kidney disease (PCKD; Figure 13.8) is an autosomal recessive disease that has been mapped to the short arm of chromosome 6 (p6). In childhood PCKD, the kidneys are huge and spongy and contain numerous cysts due to the dilation of collecting ducts and tubules, which severely compromises kidney function. Childhood PCKD is associated clinically with cysts of the liver, pancreas, and lungs. Treatment includes dialysis and kidney transplant. The photograph in Figure 13.8 shows an infant with polycystic kidney (arrow). The light micrograph shows large, fluid-filled cysts (CY) throughout the substance of the kidney. Between the cysts, some functioning nephrons can be observed.

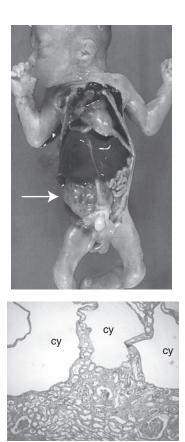


FIGURE 13.8. Childhood polycystic kidney disease.

- I. Wilms tumor (WT; Figure 13.9) is the most common renal malignancy of childhood. WT presents as a large, solitary, well-circumscribed mass that on cut section is soft, homogeneous, and tan-gray in color. WT is interesting histologically, in that it tends to recapitulate different stages of embryological formation of the kidney, so that three classic histological areas are described: a stromal area; a blastemal area of tightly packed embryonic cells; and a tubular area. The photograph in Figure 13.9 shows a Wilms tumor extending from normal kidney tissue (arrow). The light micrograph shows the tumor that is characterized histologically by recognizable attempts to recapitulate embryonic development of the kidney. In this regard, the following three components are seen: (1) metanephric blastema elements (blas) consisting of clumps of small, tightly packed embryonic cells, (2) stromal elements (str), and (3) epithelial elements generally in the form of abortive attempts at forming tubules (t) or glomeruli.
- J. Ureteropelvic duplications (Figure 13.10) occur when the ureteric bud prematurely divides before penetrating the metanephric blastema. This results in either a double kidney or a duplicated ureter and renal pelvis. The term duplex kidney refers to a configuration in which two ureters drain one kidney. The intravenous urogram (IVU) on the left in Figure 13.10 shows bilateral duplication of the collecting system (*arrows*). The cystogram on the right shows reflux into both of the lower collecting systems (*arrows*) only.
- K. Exstrophy of the bladder occurs when the posterior wall of the urinary bladder is exposed to the exterior. It is caused by a failure of the anterior abdominal wall and anterior wall of the bladder to develop properly. It is associated clinically with urine drainage to the exterior and epispadias. Surgical reconstruction is difficult and prolonged.
- L. Urachal fistula or cyst occurs when a remnant of the allantois persists, thereby forming fistula or cyst. It is found along the midline on a path from the umbilicus to the apex of the urinary bladder. A urachal fistula forms a direct connection between the urinary bladder and the outside of the body at the umbilicus, causing **urine drainage** from the umbilicus.
- **M. Ectopic opening of the ureter occurs** when the ureteric bud fails to separate from the mesonephric duct, which results in the opening

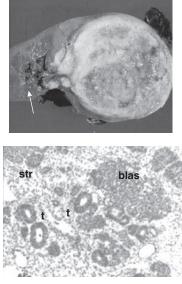


FIGURE 13.9. Wilms tumor.

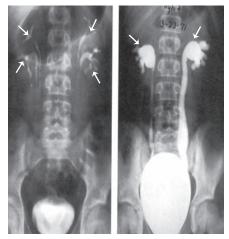
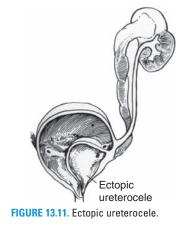


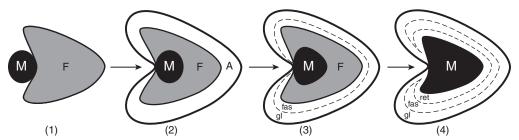
FIGURE 13.10. Ureteropelvic duplication.


164

of the ureter to be carried to a point distal to its normal position. The most common ectopic opening is a **lateral ureteral ectopia**, in which the opening is lateral to its normal position.

- 1. In males, the ectopic openings are most commonly located in the prostatic urethra, ejaculatory ducts, ductus deferens, or rectum. Because the ectopic openings are all located above the external urethral sphincter, boys with an ectopic opening of the ureter do not present with urine incontinence.
- **2.** In females, the ectopic openings are most commonly located in the urethra, vestibule, or vagina. Because the ectopic openings are all located below the external urethral sphincter, girls with an ectopic opening of the ureter generally present with urine incontinence.

N. Ureterocele (Figure 13.11)


- **1. Simple ureterocele** occurs when the distal end of the ureter has a cystlike protrusion into the submucosal layer of the urinary bladder.
- **2. Ectopic ureterocele** occurs when the distal end of the ureter has a cystlike protrusion into the submucosal layer of the urinary bladder that is almost invariably associated with an ectopic ureter and duplication. In this situation, the ureterocele is at the end of the ureter from the upper renal segment and is located inferior to the other ureter opening. The diagram in Figure 13.11 shows an ectopic ureterocele located at the end of an enlarged ureter from the upper renal segment. The opening of the enlarged ureter is located inferior to the normal-sized ureter from the lower renal segment.

IX. DEVELOPMENT OF THE SUPRARENAL GLAND (FIGURE 13.12)

A. Cortex

- **1.** The cortex forms from two episodes of mesoderm proliferation that occur between the root of the dorsal mesentery and the gonad.
- 2. The first episode forms the inner fetal **cortex**.
- **3.** The second episode forms the outer **adult cortex**, by which mesoderm proliferation occurs at the periphery of the fetal cortex.
- **4**. During the fetal period and at birth, the suprarenal glands are very large due to the size of the fetal cortex.
- **5.** The suprarenal glands become smaller as the fetal cortex involutes rapidly during the first 2 weeks after birth and continues to involute during the first year of life.

FIGURE 13.12. Development of the suprarenal gland. (1) At week 6, the fetal cortex (F) and medulla (M) at the medial aspect of the adrenal gland is apparent. (2) At week 9, the adult cortex (A) has formed at the periphery of the fetal cortex. Note that the medulla is completely surrounded by the adult and fetal cortex. (3) At birth, the fetal cortex is still present and the adult cortex has differentiated into the zona glomerulosa (gl) and zona fasciculate (fas). (4) At 3 years of age, the fetal cortex has completely involuted, thus reducing the size of the suprarenal gland, and the adult cortex has further differentiated to form the zona reticularis (ret).

6. The zona glomerulosa and zona fasciculata of the adult cortex are present at birth, but the zona reticularis is not formed until age 3 years.

B. Medulla

- **1.** The medulla forms when neural crest cells aggregate at the medial aspect of the fetal cortex and eventually become surrounded by the fetal and adult cortex.
- **2**. The neural crest cells differentiate into **chromaffin cells**, which stain yellow-brown with chromium salts.
- **3.** Chromaffin cells can be found in extrasuprarenal sites at birth, but these sites normally regress completely by puberty.
- 4. In a normal adult, chromaffin cells are found only in the suprarenal medulla.

C. Clinical Considerations

1. Neuroblastoma (NB; Figure 13.13) is a common extracranial neoplasm containing primitive neuroblasts (small cells arranged in Homer-Wright pseudorosettes) of neural crest origin. NB occurs mainly in children and is found in extraadrenal sites usually along the sympathetic chain ganglia (60%) or within the adrenal medulla (40%). NB metastasizes widely to the bone marrow, bone, and lymph nodes. A common laboratory finding is increased urine vanillylmandelic acid (VMA) and metanephrine levels. Neuroblastomas vary in size from 1 cm to filling the entire abdomen. They are generally soft and white to gray-pink in color. As the size increases, the tumors become hemorrhagic and undergo calcification and cyst formation. The photograph in Figure 13.13 shows a neuroblastoma. Note the nodular appearance of this tumor, with the kidney apparent on its left border (arrow). The light micrograph shows that the neoplastic cells are small, primitive-looking cells with dark nuclei and scant cytoplasm. The cells are generally arranged as solid sheets, and some cells arrange around a central fibrillar area, forming Homer-Wright pseudorosettes (asterisk).

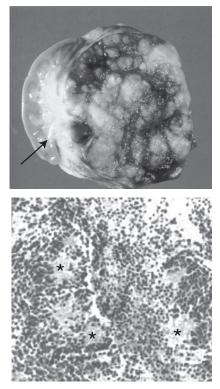


FIGURE 13.13. Neuroblastoma.

- 2. Pheochromocytoma (PH; Figure 13.14) is a relatively rare neoplasm that contains both epinephrine and norepinephrine. PH occurs mainly in adults 40-60 years old and is generally found in the region of the adrenal gland, but it may be found in extrasuprarenal sites. PH is associated with persistent or paroxvsmal hypertension, anxiety, tremor, profuse sweating, pallor, chest pain, and abdominal pain. Laboratory findings include increased urine VMA and metanephrine levels, inability to suppress catecholamines with clonidine, and hyperglycemia. PH is treated by surgery or phenoxybenzamine (an α -adrenergic antagonist). Pheochromocytomas vary in size from 3 to 5 cm in diameter. They are gray-white to pink-tan in color. Exposure of the cut surface often results in darkening of the surface due to formation of yellow-brown adrenochrome pigment. The photograph in Figure 13.14 shows a pheochromocytoma. The light micrograph shows neoplastic cells that have abundant cytoplasm with small, centrally located nuclei. The cells are generally found in clusters separated by a slender stroma and numerous capillaries. Numerous cytoplasmic hyaline eosinophilic globules are sometimes present that are derived from membranes of secretory granules.
- 3. Congenital adrenal hyperplasia (CAH; Figure 13.15)
 - a. CAH is caused most commonly by mutations in genes for enzymes involved in adrenocortical steroid biosynthesis (e.g., 21-hydroxylase deficiency, 11β-hydroxylase deficiency).
 - **b. 21-hydroxylase deficiency** (current terminology is **CYP21A2 deficiency**) accounts for 90% of all cases of congenital adrenal hyperplasia.
 - c. CYP21A2 deficiency is an autosomal recessive genetic disorder caused by a mutation in the CYP21A2 gene located on chromosome 6p21.3, which encodes for the 21-hydroxylase enzyme.
 - **d**. In CYP21A2 deficiency, there is defective conversion of 17-hydroxyprogesterone to 11-deoxycortisol. There is virtually no synthesis of the cortisol or aldosterone, so that intermediates are funneled into androgen biosynthesis, thereby elevating androgen levels.
 - e. In CYP21A2 deficiency, the characteristic biochemical finding is elevated serum concentration of 17-hydroxyprogesterone (i.e., >3500 ng/dL, or 105 nmol/L)

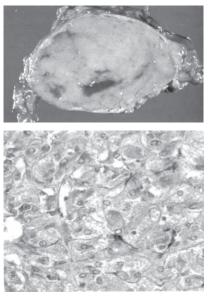


FIGURE 13.14. Pheochromocytoma.

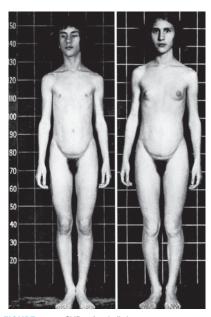


FIGURE 13.15. CYP21A2 deficiency.

- f. The elevated levels of androgens lead to masculinization of a female fetus (i.e., female pseudo-intersexuality).
- **g**. Female pseudo-intersexuality produces the following clinical findings: mild clitoral enlargement, complete labioscrotal fusion with a phalloid organ, or macrogenitosomia (in the male fetus). In clinical practice, most CYP21A2 deficiency cases are subcomplete, so that other symptoms may be the presenting condition, such as precocious puberty, virilization, and infertility.
- **h**. Because cortisol cannot be synthesized, negative feedback to the adenohypophysis does not occur, so adrenocorticotropic hormone (ACTH) continues to stimulate the adrenal cortex, resulting in adrenal hyperplasia.
- i. Because aldosterone cannot be synthesized, the patient presents with **hyponatremia** ("salt-wasting") with accompanying **dehydration** and **hyperkalemia**.
- j. Treatment includes immediate infusion of intravenous saline and long-term steroid hormone replacement—both cortisol and mineralocorticoids (9α -fludrocortisone).
- **k.** The photographs in Figure 13.15 show a patient (XX genotype) with CYP21A2 deficiency. This 10-year-old girl is clearly masculinized (left panel). After 9 months of cortisone therapy, there is marked improvement (right panel).

Study Questions for Chapter 13

1. When does the metanephros become functional?

- (A) At week 3 of development
- (B) At week 4 of development
- (C) At week 10 of development
- (D) Just before birth
- (E) Just after birth

2. A urachal cyst is a remnant of the

- (A) urogenital sinus
- (B) urogenital ridge
- (C) cloaca
- (D) allantois
- (E) mesonephric duct

3. During surgery for a benign cyst on the kidney, the surgeon notes that the patient's right kidney has two ureters and two renal pelves. This malformation is

- (A) an abnormal division of the pronephros
- **(B)** an abnormal division of the mesonephros
- (C) formation of an extra mass of intermediate mesoderm
- **(D)** a premature division of the metanephric blastema
- (E) a premature division of the ureteric bud

4. The transitional epithelium lining the urinary bladder is derived from

- (A) ectoderm
- (B) endoderm
- (C) mesoderm
- (D) endoderm and mesoderm
- (E) neural crest cells

5. The transitional epithelium lining the ureter is derived from

- (A) ectoderm
- (B) endoderm
- (C) mesoderm
- (D) endoderm and mesoderm
- (E) neural crest cells

6. The podocytes of Bowman's capsule are derived from

- (A) ectoderm
- (B) endoderm
- (C) mesoderm
- (D) endoderm and mesoderm
- (E) neural crest cells

7. The proximal convoluted tubules of the definitive adult kidney are derived from the

- (A) ureteric bud
- (B) metanephric vesicle
- (C) mesonephric duct
- (D) mesonephric tubules
- (E) pronephric tubules

8. The trigone on the posterior wall of the urinary bladder is formed by the

- (A) incorporation of the lower end of the mesonephric ducts
- **(B)** incorporation of the lower end of the pronephric ducts
- **(C)** incorporation of the metanephric blastema
- (D) incorporation of the mesonephric tubules
- (E) incorporation of the pronephric tubules

9. A 6-year-old girl presents with a large abdominal mass just superior to the pubic symphysis. The mass is tender when palpated and fixed in location. During surgery, a fluid-filled mass is noted connected to the umbilicus superiorly and to the urinary bladder inferiorly. What is the diagnosis?

- (A) Pelvic kidney
- (B) Horseshoe kidney
- (C) Polycystic disease of the kidney
- (D) Urachal cyst
- (E) Exstrophy of the bladder

10. Immediately after birth of a boy, a moist, red protrusion of tissue is noted just superior to his pubic symphysis. After observation, urine drainage is noted from the upper lateral corners of this tissue mass. What is the diagnosis?

- (A) Pelvic kidney
- (B) Horseshoe kidney
- (C) Polycystic disease of the kidney
- (D) Urachal cyst
- (E) Exstrophy of the bladder

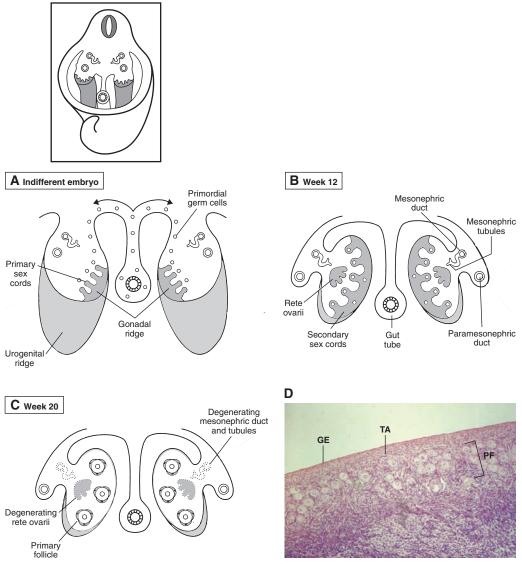
Answers and Explanations

- **1. C.** The metanephros begins to form at week 5 and starts to function in the fetus at about week 10. The pronephros is not functional in humans. The mesonephros is the interim kidney, which functions until the metanephros is ready.
- **2. D.** The upper end of the urogenital sinus is in patent communication with the allantois, which lies in the umbilical cord. The allantois normally regresses and forms a fibrous cord. If a remnant persists, it forms a urachal cyst or sinus.
- **3. E.** The ureteric bud seems to be preprogrammed to undergo repeated divisions. These divisions normally begin on contact with the metanephric blastema. If the ureteric bud undergoes division prematurely, duplication of the ureter and renal pelvis occurs. In some circumstances, two separate kidneys may form.
- **4. B.** The transitional epithelium lining the urinary bladder is derived from endoderm because the urinary bladder develops from the upper end of the urogenital sinus. The origin of the urogenital sinus can be traced back to the gut tube, which is lined by endoderm.
- **5. C.** The transitional epithelium lining the ureter is derived from mesoderm because the ureter develops from the ureteric bud. The ureteric bud is a diverticulum from the mesonephric duct whose origin can be traced back to the intermediate mesoderm.
- **6. C.** The podocytes of Bowman's capsule develop from the metanephric vesicles, which are of mesodermal origin.
- **7. B.** The distal convoluted tubule, loop of Henle, proximal convoluted tubule, and Bowman's capsule are all derived from the metanephric vesicle.
- **8. A.** The lower ends of the mesonephric ducts are incorporated into the posterior wall of the urinary bladder. The mesonephric ducts contribute to the connective tissue component of the posterior wall at the trigone. It is generally believed that the transitional epithelium lining the entire bladder (even the trigone) is of endodermal origin.
- **9. D.** A urachal cyst or sinus forms from a remnant of the allantois and is found along the midline on a path from the umbilicus to the apex of the urinary bladder. The epithelium lining the cyst produces secretions that gradually fill the remnant with fluid. Very rarely, the entire allantois persists, forming a fistula that is patent from the urinary bladder to the exterior at the umbilicus.
- **10. E.** The moist, red tissue mass that is exposed to the exterior is actually the posterior wall of the urinary bladder. This is called exstrophy of the bladder and is caused when the anterior abdominal wall and anterior wall of the bladder fail to form. The ureters open onto the posterior wall; therefore, urine drainage is apparent.

Chapter 14 Female Reproductive System

I. THE INDIFFERENT EMBRYO

- A. The genotype of the embryo (46,XX or 46,XY) is established at fertilization.
- **B.** During weeks 1–6, the embryo remains in a sexually indifferent or undifferentiated stage. This means that genetically female embryos and genetically male embryos are phenotypically indistinguishable.
- **C. During week 7**, the indifferent embryo begins phenotypic sexual differentiation.
- **D.** By week 12, female or male characteristics of the external genitalia can be recognized.
- E. By week 20, phenotypic differentiation is complete.


1. Phenotypic sexual differentiation

- **a.** Phenotypic sexual differentiation is determined by the *SRY* gene and may result in individuals with a female phenotype, an intersex phenotype, or a male phenotype.
- **b.** The *SRY* gene on chromosome Yp11.3 encodes for a <u>sex-determining region Y</u> (also called **testes-determining factor [TDF]**).
- **c.** TDF is a 220–amino acid nonhistone protein that contains a highly conserved DNAbinding region called a **high mobility group box**.
- **d.** As the indifferent gonad develops into the testes, Leydig cells and Sertoli cells differentiate to produce **testosterone** and **Müllerian-inhibiting factor (MIF)**, respectively.
- e. In the presence of TDF, testosterone, and MIF, the indifferent embryo will be directed to the male phenotype.
- f. In the absence of TDF, testosterone, and MIF, the indifferent embryo will be directed to the female phenotype.
- 2. Components of the indifferent embryo
 - **a.** The components of the indifferent embryo that are remodeled to form the adult female reproductive system include the **gonads**, **genital ducts**, and **primordia of external genitalia**.
 - **b.** Phenotypic sexual differentiation occurs in a sequence beginning with the gonads, then the genital ducts, and finally the primordia of external genitalia.

II. DEVELOPMENT OF THE GONADS (FIGURE 14.1)

A. The ovary

1. The **intermediate mesoderm** forms a longitudinal elevation along the dorsal body wall, the **urogenital ridge**.

FIGURE 14.1. Development of the gonads. Diagram indicating the differentiation of the gonad in the female. The small figure in the box is a cross section of the embryo at the level of the urogenital ridge for orientation. (**A**) Gonad in the indifferent embryo. (**B**) Ovary at week 12. (**C**) Ovary at week 20. (**D**) Light micrograph of the definitive adult ovary, showing several primordial follicles (PFs). Each primordial follicle consists of a primary oocyte surrounded by a single layer of squamous cells. The nucleus of a primary oocyte is typically large, but many times the nucleus is not in the plane of section, so that only the cytoplasm of the primary oocyte is observed. GE = germinal epithelium; TA = tunica albuginea.

- **2.** The coelomic epithelium and underlying mesoderm of the urogenital ridge proliferate to form the **gonadal ridge**.
- **3. Primary sex cords** develop from the gonadal ridge and incorporate primordial germ cells (XX genotype), which migrate into the gonad from the wall of the yolk sac.
- **4**. Primary sex cords extend into the medulla and develop into the **rete ovarii**, which eventually degenerates. Later, **secondary sex cords** develop and incorporate primordial germ cells as a thin **tunica albuginea** forms.
- **5.** The secondary sex cords break apart and form isolated cell clusters called **primordial follicles**, which contain **primary oocytes** surrounded by a layer of **simple squamous cells**.
- **6.** Primary oocytes, simple squamous cells, and connective tissue stroma of the ovary are derived from mesoderm.

B. Relative descent of the ovaries

- **1.** The ovaries originally develop within the abdomen but later undergo a relative descent into the pelvis as a result of disproportionate growth of the upper abdominal region away from the pelvic region.
- 2. Other factors in this movement are uncertain but probably include the gubernaculum.
- **3.** The gubernaculum is a band of fibrous tissue along the posterior wall that extends from the medial pole of the ovary to the uterus at the junction of the uterine tubes, forming the **ovarian ligament**.
- **4**. The gubernaculum then continues into the labia majora, forming the **round ligament of the uterus**.
- **5.** The peritoneum evaginates alongside the gubernaculum to form the **processus vaginalis**, which is obliterated in the female later in development.

III. DEVELOPMENT OF THE GENITAL DUCTS (FIGURE 14.2)

A. Paramesonephric (Müllerian) ducts

- **1.** The paramesonephric ducts develop as invaginations of the lateral surface of the urogenital ridge.
- 2. The cranial portions of the paramesonephric ducts develop into the **uterine tubes**.
- **3.** The caudal portions of the paramesonephric ducts fuse in the midline to form the **uterovaginal primordium** and thereby bring together two peritoneal folds called the **broad ligament**.
- **4.** The uterovaginal primordium develops into the **uterus**, **cervix**, and **superior one third of the vagina**.
- **5.** The paramesonephric ducts project into the dorsal wall of the cloaca and induce the formation of the **sinovaginal bulbs**.
- 6. The sinovaginal bulbs fuse to form the solid **vaginal plate**, which canalizes and develops into the **inferior two thirds of the vagina**.
- **7.** Although the vagina has a dual origin, most authorities agree that the epithelial lining of the entire vagina is of endodermal origin.

B. Mesonephric (Wolffian) ducts and tubules

1. The mesonephric ducts and tubules develop in the female as part of the urinary system because these ducts are critical in the formation of the definitive metanephric kidney. However, they degenerate in the female after formation of the metanephric kidney.

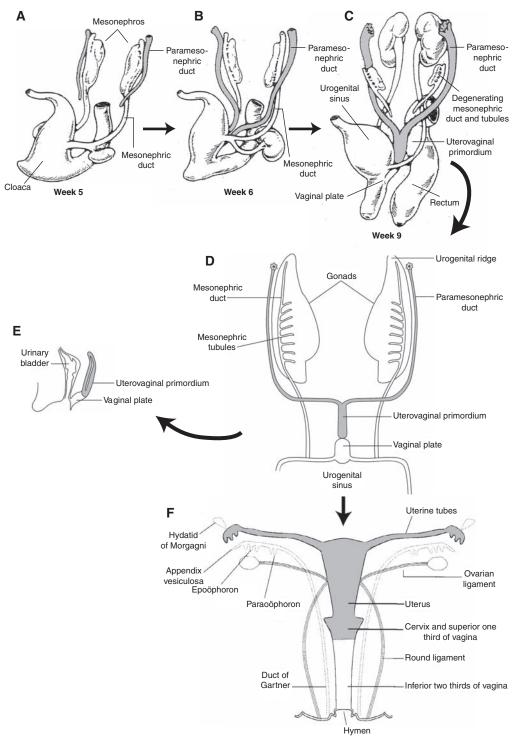


FIGURE 14.2. Development of the genital ducts. (A, B, C) Lateral views of the embryo. (A) At week 5. Paired paramesonephric ducts begin to form along the lateral surface of the urogenital ridge at the mesonephros and grow in close association to the mesonephric duct. (B) At week 6. The paramesonephric ducts grow caudally and project into the dorsal wall of the cloaca and induce the formation of the sinovaginal bulbs (not shown). The mesonephric ducts continue to prosper. (C) At week 9. The caudal portions of the paramesonephric ducts fuse in the midline to form the uterovaginal primordium, and the sinovaginal bulbs fuse to form the vaginal plate at the urogenital sinus. During this time period, the mesonephric duct and mesonephric tubules both degenerate in the female. (D) Genital ducts in the indifferent embryo. (E) Lateral view showing the dual origin of the vagina. (F) Female components and vestigial remnants (*dotted lines*) at birth.

- **C. Vestigial remnants (Figure 14.3).** The formation of cysts is related to vestigial remnants of the genital ducts. The diagram in Figure 14.3 shows the location of various cysts in the female reproductive tract:
 - **1.** A hydatid cyst of Morgagni (1) arises from hydatid of Morgagni, which is a remnant of the paramesonephric duct.
 - **2.** A Kobelt's cyst (2) arises from the appendix vesiculosa, which is a remnant of the mesonephric duct.
 - **3.** A cyst of the epoophoron (3) arises from the epoophoron, which is a remnant of the mesonephric tubules.

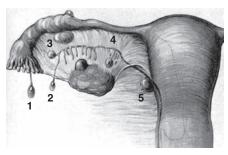


FIGURE 14.3. Location of various cysts in the female reproductive tract. See text for key.

- **4.** A cyst of the paroophoron (4) arises from the paroophoron, which is a remnant of the mesonephric tubules.
- **5.** A Gartner's duct cyst (5) arises from the duct of Gartner, which is remnant of the mesonephric duct

IV. DEVELOPMENT OF THE PRIMORDIA OF EXTERNAL GENITALIA (FIGURE 14.4)

A. A proliferation of mesoderm around the cloacal membrane causes the overlying ectoderm to rise up so that three structures are visible externally: the phallus, urogenital folds, and labioscrotal swellings.

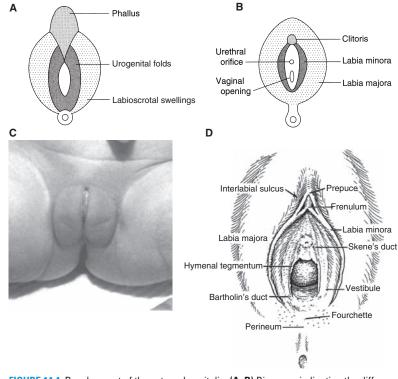


FIGURE 14.4. Development of the external genitalia. (**A**, **B**) Diagrams indicating the differentiation of the phallus, urogenital folds, and labioscrotal swellings in the female. (**A**) At week 5. (**B**) At birth. (**C**) Appearance of normal female genitalia at birth. (**D**) Diagram of the gross anatomy of the vulvar region in the adult female.

- B. The phallus forms the clitoris (glans clitoris, corpora cavernosa clitoris, and vestibular bulbs).
- **C**. The urogenital folds form the **labia minora**.
- **D**. The labioscrotal swellings form the **labia majora** and **mons pubis**.

V. TANNER STAGES OF FEMALE SEXUAL DEVELOPMENT (TABLE 14.1)

The Tanner scale includes stages of physical development in children, adolescents, and adults. The stages define physical measurements of development based on external primary and secondary sex characteristics. Due to natural variation, individuals may pass through the Tanner stages at different rates, depending on the timing of puberty.

table	14.1	Tanner Stages for the Female
Tanner Stage	Age (years)	Characteristics
I	<10	Height increases at 5–6 cm/yr Breasts have papillae elevations only Pubic hair is villus hair only (no coarse, pigmented hair)
II	9–13	Height increases at 7–8 cm/yr Breasts have palpable buds, and areolae enlarge Pubic hair is minimally coarse, pigmented hair mainly on the labia
III	12–14	Height increases at 8 cm/yr (peak rate) Breasts show elevation of contours, and areolae enlarge Pubic hair is coarse, pigmented hair and spreads over the mons pubis Axillary hair develops Acne vulgaris develops
IV	12–15	Height increases at 7 cm/yr Breasts form secondary areolar mounds Pubic hair is adult quality and does not spread to the junction of the medial thigh and perineum
V	14–18	Height increases stop after 16 years of age Breasts show adult breast contour, areolae recess to general contour of the breast, and the nipples project Pubic hair has adult distribution (upside-down triangle), spreads to the medial thigh, and does not extend up the linea alba

VI. CLINICAL CONSIDERATIONS

A. Atresia of the vagina is a condition in which the vaginal lumen is blocked due to a failure of the vaginal plate to canalize and form a lumen.

B. Uterine anomalies

1. Müllerian hypoplasia or agenesis anomalies (class l; Figure 14.5) involving the paramesonephric ducts can result in vaginal, cervical, uterine, uterine tube, or combined anomalies. The diagram in Figure 14.5 depicts class I Müllerian hypoplasia and agenesis anomalies, including lower vagina agenesis, cervix agenesis, uterus and cervix hypoplasia, and uterine tube agenesis.

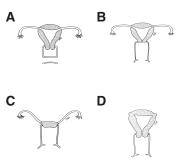
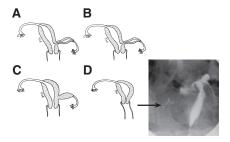



FIGURE 14.5. Class I Müllerian hypoplasia and agenesis anomalies. (A) Lower vagina agenesis. (B) Cervix agenesis. (C) Uterus and cervix hypoplasia. (D) Uterine tube agenesis.

- 2. Unicornuate uterus anomalies (class II; Figure 14.6) occur when one paramesonephric duct fails to develop or incompletely develops. The diagram in Figure 14.6 depicts class II unicornuate anomalies, including unicornuate uterus with a communicating rudimentary horn; unicornuate uterus with a noncommunicating rudimentary horn; unicornuate uterus with a rudimentary horn containing no uterine cavity; and unicornuate uterus. The hysterosalpingography (HSG) shows a single, lenticular-shaped uterine canal with no evidence of a rudimentary right horn. There is filling of the left uterine tube.
- 3. Didelphys (double uterus) anomalies (class III; Figure 14.7) occur when there is a complete lack of fusion of the paramesonephric ducts. The diagram in Figure 14.7 depicts class III didelphys (double uterus) anomalies, including didelphys with normal vagina and didelphys with complete vaginal septum. The hysterosalpingography shows a double uterus with a double vagina due to vaginal septum.

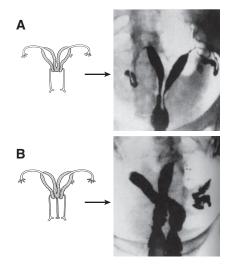
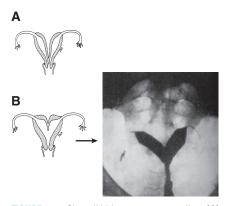



FIGURE 14.7. Class III didelphys (double uterus) anomalies. (A) Didelphys with normal vagina. A hysterosalpingography shows a double uterus with a single normal vagina. (B) Didelphys with complete vaginal septum. A hysterosalpingography shows a double uterus with a double vagina due to vaginal septum. This 17-year-old girl uses two tampons during menses.

4. Bicornuate uterus anomalies (class IV; Figure 14.8) occur when there is partial fusion of the paramesonephric ducts. The diagram in Figure 14.8 depicts class IV bicornuate anomalies, including bicornuate uterus with complete division down to the internal os and bicornuate uterus with partial division. The hysterosalpingography shows the uterine cavity partitioned into two channels.

FIGURE 14.8. Class IV bicornuate anomalies. **(A)** Bicornuate uterus with complete division down to the internal os. **(B)** Bicornuate uterus with partial division.

- **5. Septate uterus anomalies (class V; Figure 14.9)** occur when the medial walls of the caudal portion of the paramesonephric ducts partially or completely fail to resorb. The diagram in Figure 14.9 depicts class V septate uterus anomalies, including septate uterus with complete septum down to the external os and septate uterus with partial septum.
- 6. Diethylstilbestrol (DES)-related anomalies (Figure 14.10). DES was used until 1970 in the treatment of abortions, preeclampsia, diabetes, and preterm labor. For female offspring exposed to DES in utero, an increased incidence of clear cell adenocarcinoma of the vagina has been documented. In addition, many uterine anomalies that include Tshaped uterus have been observed. The diagram in Figure 14.10 depicts DES-related uterus anomalies. These anomalies typically result in a T-shaped uterus. The HSG shows a T-shaped uterus. The HSG of a normal female reproductive tract is shown for comparison.
- C. Hymen variations (Figure 14.11) include the following:
 - 1. Crescentic hymen
 - 2. Annular hymen
 - 3. Redundant hymen
 - 4. Imperforate hymen
 - 5. Cribriform hymen
 - 6. Microperforate hymen
 - 7. Septate hymen

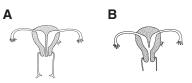
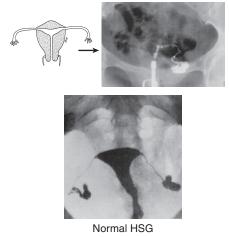
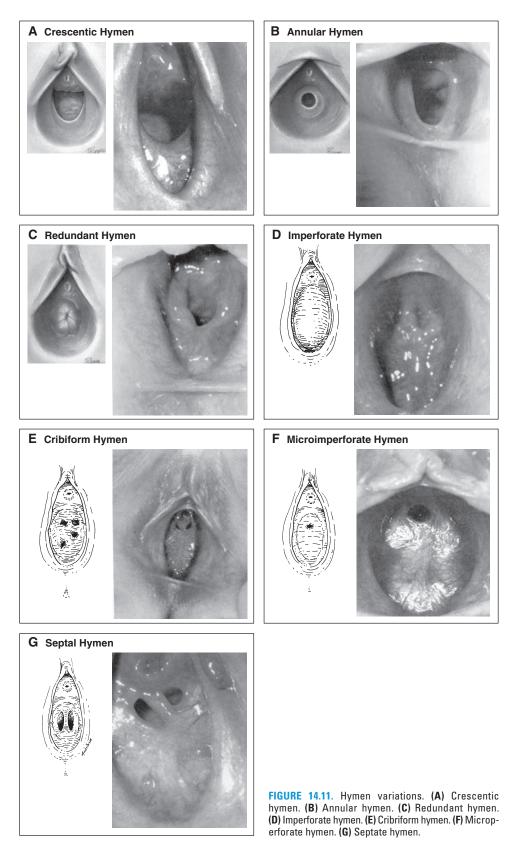




FIGURE 14.9. Class V septate uterus anomalies. (A) Septate uterus with complete septum down to the external os. (B) Septate uterus with partial septum.

FIGURE 14.10. T-shaped uterus. HSG = hysterosalpingography.

Chapter 14 Female Reproductive System

Study Questions for Chapter 14

1. The indifferent embryo begins phenotypic sexual differentiation during

- (A) week 3 of development
- (B) week 5 of development
- (C) week 7 of development
- (D) week 12 of development
- (E) week 20 of development

2. The indifferent embryo completes pheno-typic sexual differentiation during

- (A) week 3 of development
- (B) week 5 of development
- (C) week 7 of development
- (D) week 12 of development
- (E) week 20 of development

3. After the sinovaginal bulbs have proliferated and fused, they form a solid core of endodermal cells called the

- (A) vestibule of the vagina
- (B) uterovaginal primordium
- (C) urogenital sinus
- (D) vaginal plate
- (E) clitoris

4. A structure found within the adult female pelvis formed from the gubernaculum is the

- (A) broad ligament
- (B) suspensory ligament of the ovary
- (C) round ligament of the uterus
- (D) medial umbilical ligament
- (E) median umbilical ligament

5. The labia minora arise embryologically from which of the following structures?

- (A) Phallus
- (B) Labioscrotal swellings
- (C) Sinovaginal bulbs
- **(D)** Urogenital folds
- (E) Paramesonephric duct

6. The uterine tubes of the adult female are derived embryologically from which of the following?

- (A) Mesonephric duct
- **(B)** Mesonephric tubules
- (C) Paramesonephric duct
- (D) Paramesonephric tubules
- (E) Uterovaginal primordium

Answers and Explanations

- **1. C.** The embryo during weeks 1–6 remains in an indifferent or undifferentiated stage. The embryo begins phenotypic sexual differentiation during week 7.
- **2. E.** By week 12, female and male characteristics can be recognized. By week 20, phenotypic sexual differentiation is complete.
- **3. D**. The sinovaginal bulbs proliferate, fuse, and form the vaginal plate under the inductive influence of the paramesonephric ducts. The vaginal plate then canalizes to form the inferior two thirds of the vagina.
- **4. C**. The round ligament of the uterus and the ovarian ligament both form from the gubernaculum.
- 5. D. In the female, the urogenital folds remain unfused and form the labia minora.
- 6. C. The cranial portion of the paramesonephric ducts form the uterine tubes.

chapter 15 Male Reproductive System

I. THE INDIFFERENT EMBRYO

- A. The genotype of the embryo (46,XX or 46,XY) is established at fertilization.
- **B.** During weeks 1–6, the embryo remains in a sexually indifferent or undifferentiated stage. This means that genetically female embryos and genetically male embryos are phenotypically indistinguishable.
- C. During week 7, the indifferent embryo begins phenotypic sexual differentiation.
- D. By week 12, female or male characteristics of the external genitalia can be recognized.
- E. By week 20, phenotypic differentiation is complete.

1. Phenotypic sexual differentiation

- **a.** Phenotypic sexual differentiation is determined by the *SRY* gene and may result in individuals with a female phenotype, an intersex phenotype, or a male phenotype.
- **b.** The *SRY* gene on chromosome Yp11.3 encodes for a <u>sex-determining region Y</u> (also called **testes-determining factor [TDF]**).
- **c.** TDF is a 220–amino acid nonhistone protein that contains a highly conserved DNAbinding region called a **high mobility group box**.
- **d.** As the indifferent gonad develops into the testes, Leydig cells and Sertoli cells differentiate to produce **testosterone** and **Müllerian-inhibiting factor (MIF)**, respectively.
- e. In the presence of TDF, testosterone, and MIF, the indifferent embryo will be directed to the male phenotype.
- f. In the absence of TDF, testosterone, and MIF, the indifferent embryo will be directed to the female phenotype.
- 2. Components of the indifferent embryo
 - **a.** The components of the indifferent embryo that are remodeled to form the adult female reproductive system include the **gonads**, **genital ducts**, and **primordia of external genitalia**.
 - **b.** Phenotypic sexual differentiation occurs in a sequence beginning with the gonads, then the genital ducts, and finally the primordia of external genitalia.

II. DEVELOPMENT OF THE GONADS (FIGURE 15.1)

A. The testes

- **1.** The **intermediate mesoderm** forms a longitudinal elevation along the dorsal body wall, the **urogenital ridge**.
- **2.** The coelomic epithelium and underlying mesoderm of the urogenital ridge proliferate to form the **gonadal ridge**.

- **3. Primary sex cords** develop from the gonadal ridge and incorporate primordial germ cells (XY genotype), which migrate into the gonad from the wall of the yolk sac.
- 4. The Y chromosome carries a gene on its short arm that codes for **testes- determining factor** (**TDF**), which is crucial to testes differentiation.
- **5.** The primary sex cords extend into the medulla of the gonad and lose their connection with the surface epithelium as the thick **tunica albuginea** forms.
- 6. The primary sex cords form the seminiferous cords, tubuli recti, and rete testes.

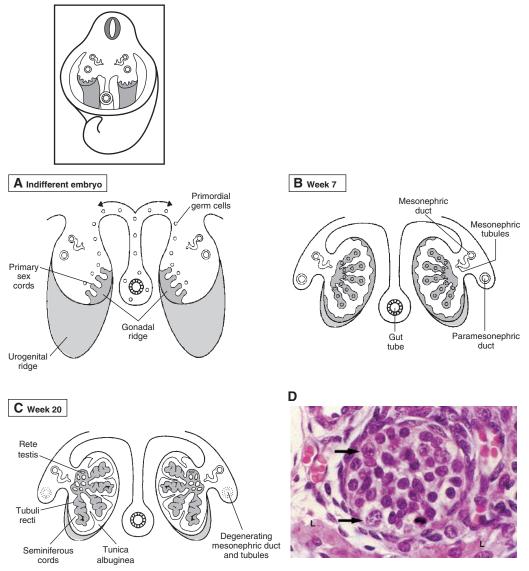


FIGURE 15.1. Development of the gonads. Diagram indicating the differentiation of the gonad in the male. (A) Gonad in the indifferent embryo. (B) Testes at week 7. (C) Testes at week 20. (D) Light micrograph of a fetal testis, showing a seminiferous cord composed of primordial germ cells and Sertoli cells. The primordial germ cells are indicated by arrows. All the other nuclei belong to immature Sertoli cells. Leydig cells (L) are found surrounding the seminiferous cords in the interstitial space.

184 BRS Embryology

- 7. Seminiferous cords consist of primordial germ cells and sustentacular (Sertoli) cells, which secrete Müllerian-inhibiting factor (MIF).
- 8. The mesoderm between the seminiferous cords gives rise to the **interstitial (Leydig) cells**, which secrete **testosterone**.
- **9.** The primordial germ cells, sustentacular (Sertoli) cells, interstitial (Leydig) cells, and connective tissue stroma of the testes are derived from mesoderm.
- **10.** The seminiferous cords remain as solid cords until puberty, when they acquire a lumen and are then called **seminiferous tubules**.

B. Relative descent of the testes

- **1.** The testes originally develop within the abdomen but later undergo a relative descent into the scrotum as a result of disproportionate growth of the upper abdominal region away from the pelvic region.
- **2.** Other factors involved in this movement are uncertain but probably include the **gubernaculum**.
- **3.** The gubernaculum is a band of fibrous tissue along the posterior wall that extends from the caudal pole of the testes to the scrotum.
- **4.** Remnants of the gubernaculum in the adult male serve to anchor the testes within the scrotum.
- **5.** The peritoneum evaginates alongside the gubernaculum to form the **processus vaginalis**.
- **6.** Later in development, most of the processus vaginalis is obliterated except at its distal end, which remains as a peritoneal sac called the **tunica vaginalis of the testes**.

III. DEVELOPMENT OF THE GENITAL DUCTS (FIGURE 15.2)

A. Paramesonephric (Müllerian) ducts

- **1.** The paramesonephric ducts develop as invaginations of the lateral surface of the urogenital ridge.
- **2.** The cranial portions run parallel to the mesonephric ducts.
- **3.** The caudal portions fuse in the midline to form the **uterovaginal primordium**.
- **4.** Under the influence of MIF, the cranial portions of the paramesonephric ducts and the uterovaginal primordium regress.

B. Mesonephric (Wolffian) ducts and tubules

- **1.** The mesonephric ducts and tubules develop in the male as part of the urinary system because these ducts are critical in the formation of the definitive metanephric kidney.
- 2. The mesonephric ducts then proceed to additionally form the epididymis, ductus deferens, seminal vesicle, and ejaculatory duct.
- **3.** A few mesonephric tubules in the region of the testes form the **efferent ductules** of the testes.

C. Vestigial remnants

- **1.** Vestigial remnants of the paramesonephric duct (called the **appendix testis**) may be found in the adult male.
- **2.** Vestigial remnants of the mesonephric duct (called the **appendix epididymis**) may be found in the adult male.
- **3.** Vestigial remnants of mesonephric tubules (called the **paradidymis**) may be found in the adult male.

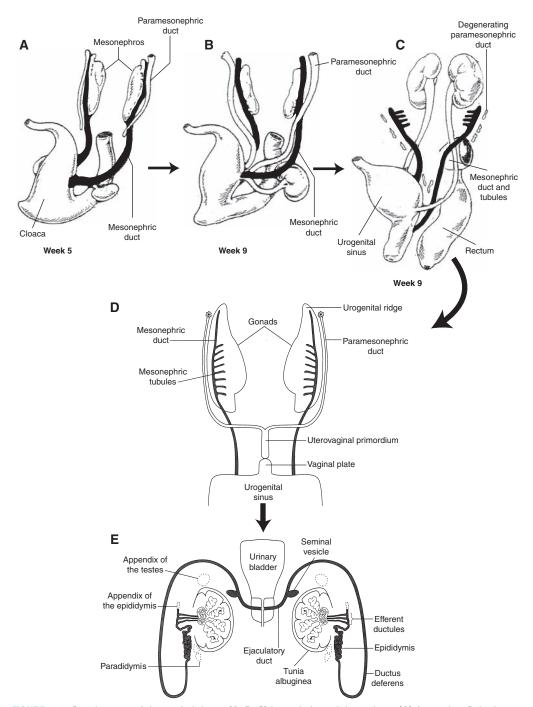


FIGURE 15.2. Development of the genital ducts. (A, B, C) Lateral view of the embryo. (A) At week 5. Paired paramesonephric ducts begin to form along the lateral surface of the urogenital ridge at the mesonephros and grow in close association to the mesonephric duct. (B) At week 6. The paramesonephric ducts grow caudally and project into the dorsal wall of the cloaca and induce the formation of the sinovaginal bulbs (not shown). The mesonephric ducts continue to prosper. (C) At week 9. The mesonephric ducts and mesonephric tubules establish contact with the testes and develop into definitive adult structures. During this time period, the paramesonephric ducts degenerate in the male. (D) Genital ducts in the indifferent embryo. (E) Male components and vestigial remnants (*dotted lines*). The mesonephric ducts/ tubules and their derivatives are shaded.

IV. DEVELOPMENT OF THE PRIMORDIA OF EXTERNAL GENITALIA (FIGURE 15.3)

- **A**. A proliferation of mesoderm around the cloacal membrane causes the overlying ectoderm to rise up so that three structures are visible externally: the **phallus**, **urogenital folds**, and **labioscrotal swellings**.
- **B.** The phallus forms the **penis (glans penis, corpora cavernosa penis,** and **corpus spongiosum penis)**.
- C. The urogenital folds form the ventral aspect of the penis (i.e., penile raphe).
- D. The labioscrotal swellings form the scrotum.

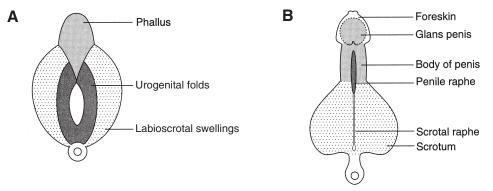


FIGURE 15.3. Development of the external genitalia. (A, B) Diagrams indicating the differentiation of the phallus, urogenital folds, and labioscrotal swellings in the male. (A) At week 5. (B) At birth.

V. TANNER STAGES OF MALE SEXUAL DEVELOPMENT (TABLE 15.1)

The Tanner scale includes stages of physical development in children, adolescents, and adults. They define physical measurements of development based on external primary and secondary sex characteristics. Due to natural variation, individuals may pass through the Tanner stages at different rates, depending on the timing of puberty.

VI. CLINICAL CONSIDERATIONS

A. Male anomalies

- 1. **Hypospadias (Figure 15.4)** occurs when the urethral folds fail to fuse completely, resulting in the external urethral orifice opening onto the ventral surface of the penis. It is generally associated with a poorly developed penis that curves ventrally, known as **chordee**. The upper photograph in Figure 15.4 shows hypospadias with a urethral opening on ventral surface (*arrow*). The lower photograph shows chordee. Note that the penis is poorly developed and bowed ventrally.
- **2. Epispadias (Figure 15.5)** occurs when the external urethral orifice opens onto the dorsal surface of the penis. It is generally associated with **exstrophy of the bladder**. The photograph in Figure 15.5 shows epispadias with two urethral openings on the dorsal surface of the penis (*arrows*).

table	15.1	Tanner Stages for the Male	
Tanner Stage	Age (years)	Characteristics	
I	<10	Height increases at 5–6 cm/yr Testes are 2.5 cm in size (long axis) Penis is ~3 cm in length and shows no growth Pubic hair is villus hair only (no coarse, pigmented hair)	
II	9–13	Height increases at 5–6 cm/yr	
		Testes are 2.5–3.2 cm in size (long axis)	
		Penis shows earliest signs of growth in length and width	
	12–14	Pubic hair is minimally coarse, pigmented hair mainly at the base of the penis Height increases at 7–8 cm/yr	
	12-14	Testes are 3.6 cm is size (long axis) Penis shows growth in length (to ~6 cm) and width Pubic hair is coarse, pigmented hair and spreads over the pubis	
IV	12–15	Height increases at 10 cm/yr (peak rate)	
		Testes are 4–4.5 cm in size (long axis)	
		Penis shows growth in length (to \sim 10 cm) and width Pubic hair is adult quality and does not spread to the junction of the medial thigh and perineum Axillary hair develops Acne vulgaris develops	
V	14–18	Height increases stop after 17 years of age Testes are >4.5 cm in size (long axis) Penis shows growth in length (to ~15 cm) and width; mature penis size is reached by 16.5 years Pubic hair has adult distribution (upside-down triangle), spreads to the medial thigh, and does not extend up the linea alba	

FIGURE 15.4. Hypospadias.

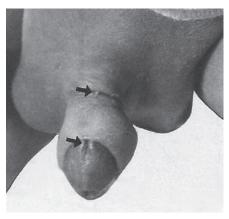


FIGURE 15.5. Epispadias.

188 BRS Embryology

3. Bilateral undescended testes (cryptorchidism; Figure 15.6) occurs when both testes fail to descend into the scrotum. Descent of the testes is evident within 3 months after birth. Cryptorchidism results in sterility. The undescended testes may be found in the abdominal cavity or in the inguinal canal. Unilateral undescended testis may also occur. The photograph in Figure 15.6 shows cryptorchidism. Note that the both testes have not descended into the scrotal sac.

FIGURE 15.6. Cryptorchidism.

- **4. Hydrocele of the testes (Figure 15.7)** occurs when a small patency of the processus vaginalis remains so that peritoneal fluid can flow into the processus vaginalis, which results in a fluid-filled cyst near the testes. The photograph in Figure 15.7 shows bilateral hydrocele.
- **5. Congenital inguinal hernia** occurs when a large patency of the processus vaginalis remains so that a loop of intestine may herniate into the scrotum or labia majora.

It is most common in males and is generally associated with cryptorchidism.

B. Other anomalies of the reproductive system

1. Intersexuality

- **a**. Because the early embryo goes through an indifferent stage, events may occur by which a fetus does not progress toward either of the two usual phenotypes but gets caught in an intermediate stage known as intersexuality.
- **b.** Intersexuality is classified according to the histological appearance of the **gonad** and **ambiguous genitalia**.
- **c. True intersexuality** occurs when an individual has both ovarian and testicular tissue (ovotestes) histologically, ambiguous genitalia, and a 46,XX genotype.
- **d**. True intersexuality is a rare condition whose cause is poorly understood.

FIGURE 15.7. Bilateral hydrocele.

- 2. Female pseudo-intersexuality (FP; Figure 15.8)
 - **a.** FP occurs when an individual has only ovarian tissue histologically and masculinization of the female external genitalia. These individuals have a **46**, **XX** genotype.
 - b. FP is most often observed clinically in association with a condition in which the fetus produces an excess of androgens (e.g., congenital adrenal hyperplasia [CAH]).
 - CAH is caused most commonly by mutations in genes for enzymes involved in adrenocortical steroid biosynthesis (e.g., 21-hydroxylase deficiency, 11β-hydroxylase deficiency).
 - d. **21-hydroxylase deficiency** (current terminology is **CYP21A2 deficiency**) accounts for 90% of all cases of congenital adrenal hyperplasia.

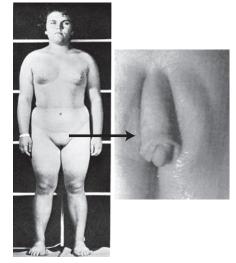


FIGURE 15.8. Female pseudo-intersexuality.

- e. CYP21A2 deficiency is an autosomal recessive genetic disorder caused by a mutation in the CYP21A2 gene located on chromosome 6p21.3, which encodes for the 21-hydroxylase enzyme.
- **f**. In CYP21A2 deficiency, there is defective conversion of 17-hydroxyprogesterone to 11-deoxycortisol. There is virtually no synthesis of the cortisol or aldosterone, so that intermediates are funneled into androgen biosynthesis, thereby elevating androgen levels.
- **g.** In CYP21A2 deficiency, the characteristic biochemical finding is **elevated serum concentration of 17-hydroxyprogesterone** (i.e., >3500 ng/dL, or 105 nmol/L).
- **h.** The elevated levels of androgens lead to **masculinization of a female fetus** (i.e., **female pseudo-intersexuality**).
- i. Female pseudo-intersexuality produces the following clinical findings: mild clitoral enlargement, complete labioscrotal fusion with a phalloid organ, or macrogenitosomia (in the male fetus). In clinical practice, most CYP21A2 deficiency cases are subcomplete, so that other symptoms may be the presenting condition, such as precocious puberty, virilization, and infertility.
- **j**. Because cortisol cannot be synthesized, negative feedback to the adenohypophysis does not occur, so adrenocorticotropic hormone (ACTH) continues to stimulate the adrenal cortex, resulting in adrenal hyperplasia.
- **k.** Because aldosterone cannot be synthesized, the patient presents with **hyponatremia** ("salt-wasting") with accompanying **dehydration** and **hyperkalemia**.
- **I.** Treatment includes immediate infusion of intravenous saline and long-term steroid hormone replacement, both cortisol and mineralocorticoids (9α -fludrocortisone).
- **m.** The photograph in Figure 15.8 shows a patient (XX genotype) with female pseudointersexuality due to CYP21A2 deficiency. Masculinization of female external genitalia is apparent, with fusion of the labia majora and enlarged clitoris (see *arrow* to inset).

- 3. Male pseudo-intersexuality (MP; Figure 15.9).
 - **a.** MP occurs when an individual has only testicular tissue histologically and various stages of stunted development of the male external genitalia. These individuals have a **46,XY genotype**.
 - **b.** MP is most often observed clinically in association with a condition in which the fetus produces a **lack of androgens (and MIF)**.
 - c. This is caused most commonly by mutations in genes for androgen steroid biosynthesis (e.g., 5α -reductase 2 deficiency or 17β -hydroxysteroid dehydrogenase).
 - **d.** Normally, 5α -reductase 2 catalyzes the conversion of testosterone (T) \rightarrow dihydrotestosterone (DHT), and 17 β -hydrox-

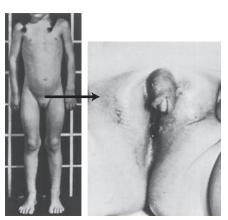


FIGURE 15.9. Male pseudo-intersexuality.

ysteroid dehydrogen ase 3 catalyzes the conversion of and rostenedione \rightarrow testosterone.

- **e**. An increased **T:DHT ratio** is diagnostic (normal = 5; 5α -reductase 2 deficiency = 20–60).
- f. The reduced levels of androgens lead to the feminization of a male fetus.
- **g.** MP produces the following clinical findings: underdevelopment of the penis and scrotum (microphallus, hypospadias, and bifid scrotum) and prostate gland. The epididymis, ductus deferens, seminal vesicle, and ejaculatory duct are normal.
- **h.** These clinical findings have led to inference that DHT is essential in the development of the penis and scrotum (external genitalia) and prostate gland in a genotypic XY fetus. At puberty, these individuals demonstrate a striking virilization.
- **i.** The photograph in Figure 15.9 shows a patient (XY genotype) with male pseudointersexuality. The stunted development of male external genitalia is apparent. The stunted external genitalia fooled the parents and physician into thinking that this XY infant was a girl. In fact, this child was raised as a girl (note pigtails). As this child neared puberty, testosterone levels increased, and clitoral enlargement ensued. This alarmed the parents, and the child was brought in for clinical evaluation.

4. Complete androgen insensitivity (CAIS; or testicular feminization syndrome; Figure 15.10)

- a. CAIS is an X-linked recessive genetic disorder caused by a loss-of-function mutation in the *AR* gene on chromosome Xq12, which encodes for the <u>androgen</u> <u>receptor</u>. The androgen receptor is a member of the steroid-thyroid-retinoid superfamily of receptors.
- **b.** The lack of androgen receptor function results in **defective virilization** in 46,XY males despite the presence of bilateral testes and normal testosterone production.
- **c.** Even though the developing male fetus is exposed to normal levels of androgens, the lack of androgen receptors renders the phallus, urogenital folds, and labioscrotal swellings unresponsive to androgens.
- **d**. The testes may be found in the abdomen, inguinal canals, or the labia majora. The testes are surgically removed to circumvent malignant tumor formation.

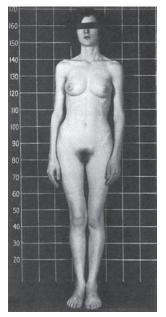


FIGURE 15.10. Complete androgen insensitivity.

- **e.** CAIS individuals have the following characteristics: the presenting cause is primary amenorrhea; there is little of no axillary or pubic hair; there are normal-appearing female external genitalia; the labia and clitoris are normal or slightly underdeveloped; the vagina is either absent or short and blind ending; there is absence or near absence of Müllerian structures in the urogenital tract (i.e., uterus, uterine tubes, cervix, superior third of the vagina); breast development is that of a normal female; patients are taller and heavier than normal females; psychosocial orientation is female; and maternal instincts are present.
- **f.** The photograph in Figure 5-10 shows a patient (XY genotype) with CAIS. Complete feminization of male external genitalia is apparent.
- 5. Transsexualism. This is a condition in which a person with apparently normal bodily sexual differentiation of one gender is convinced that he or she is actually a member of the opposite gender. Although transsexualism has been traditionally considered only a psychological issue, the sexual differentiation of the brain depends on the presence or absence of androgens, and the **bed nucleus of the stria terminalis** in the brain has been implicated in sexual differentiation of the brain.
- **6. Transgenderism.** This is a condition in which a person decides to have an in-between sex status. This type of person wants (1) to rid himself or herself of their natal sex without seeking reassignment to the opposite sex or (2) wants only partial adaptation to the opposite sex. There may be a part-time social transition to the opposite sex.

VII. SUMMARY (TABLE 15.2)

Adult Female	Indifferent Embryo	Adult Male
Ovary, ovarian follicles, rete ovarii	Gonads	Testes, seminiferous tubules, tubuli recti, rete testes, Leydig cells, Sertoli cells
Uterine tubes, uterus, cervix, superior one third of vagina	Paramesonephric duct	_
Hydatid of Morgagni		Appendix testes
_	Mesonephric duct	Epididymis, ductus deferens, seminal vesicle, ejaculatory duct
Appendix vesiculosa, Gartner's duct		Appendix epididymis
—	Mesonephric tubules	Efferent ductules
Epoophoron, paroophoron		Paradidymis
Glans clitoris, corpora cavernosa clitoris, vestibular bulbs	Phallus	Glans penis, corpora cavernosa penis, corpus spongiosum
Labia minora	Urogenital folds	Ventral aspect of penis
Labia majora, mons pubis	Labioscrotal swellings	Scrotum
Ovarian ligament, round ligament of uterus	Gubernaculum	Gubernaculum testes
_	Processus vaginalis	Tunica vaginalis

Table 15.2 summarizes the development of the female and male reproductive systems.

Italics indicate a vestigial structure.

Study Questions for Chapter 15

1. One day a 9-year-old girl surprisingly announces to her mother, "Guess what, mommy, I'm not a girl; I'm a boy." The mother is shocked but does act on the comment. During the next few years, the mother notices some tomboyish behavior and difficulty in social adjustment at school. When the girl is 12 years old, puberty starts with a striking virilization of the external genitalia. The mother is extremely concerned and seeks medical attention. What is the most likely cause?

- (A) Male pseudo-intersexuality
- **(B)** Female pseudo-intersexuality
- (C) Congenital adrenal hyperplasia
- **(D)** Testicular feminization
- (E) Illegal use of anabolic steroids

2. The most common cause of female pseudo-intersexuality is

- (A) a 46,XO genotype
- (B) a 47,XXY genotype
- (C) lack of androgen receptors
- (D) congenital adrenal hyperplasia
- (E) inadequate production of testosterone and Müllerian-inhibiting factor (MIF)

3. The most common cause of male pseudointersexuality is

- (A) a 45,XO genotype
- (B) a 47,XXY genotype
- **(C)** inadequate production of testosterone and MIF
- (D) congenital adrenal hyperplasia
- (E) lack of androgen receptors

4. The most common cause of testicular feminization syndrome is

- (A) a 45,XO genotype
- **(B)** a 47,XXY genotype
- **(C)** inadequate production of testosterone and MIF
- (D) congenital adrenal hyperplasia
- (E) lack of androgen receptors

5. In the male, failure of the urethral folds to fuse completely results in

- (A) hypospadias
- (B) epispadias
- (C) cryptorchidism
- (D) congenital inguinal hernia
- (E) hydrocele

6. The Y chromosome carries a gene on its short arm that codes for

- (A) testosterone
- **(B)** MIF
- (C) testes-determining factor (TDF)
- (**D**) progesterone
- (E) estrogen
- 7. Bilateral cryptorchidism usually results in
- (A) impotence
- (**B**) sterility
- (C) male pseudo-intersexuality
- (D) female pseudo-intersexuality
- (E) testicular feminization syndrome

8. A 17-year-old girl presents with a complaint of amenorrhea. Physical examination reveals good breast development and normal amount of pubic hair. A rudimentary vagina and a mobile mass within both the right and left labia majora are found on pelvic examination. Ultrasound reveals the absence of a uterus. What is the diagnosis?

- (A) Testicular feminization syndrome
- (B) Gonadal dysgenesis
- (C) Cryptorchidism
- (D) Female pseudo-intersexuality
- (E) Hypospadias

Answers and Explanations

- **1. A.** Reduced levels of androgens during fetal development of an XY male fetus cause a feminization of the male external genitalia such that the baby can be phenotypically mistaken for female. Parents raise the XY male baby as a girl until puberty or other medical problems bring the child to medical attention.
- **2. D**. Female pseudo-intersex individuals have a 46,XX genotype. This condition is most commonly caused by congenital adrenal hyperplasia, in which the fetus produces excessive amounts of androgens. The high androgen level will masculinize the female genitalia.
- **3. C.** Male pseudo-intersex individuals have a 46,XY genotype. This condition is most commonly caused by inadequate production of testosterone and MIF by the fetal testes. The low testosterone and MIF levels will stunt the development of the male genitalia.
- **4. E.** The most common cause of testicular feminization syndrome is the lack of androgen receptors in the urogenital folds and labioscrotal swellings. Because these tissues lack androgen receptors, they are blind or unresponsive to androgens. Consequently, these tissues develop into female external genitalia even though the fetus has a 46,XY genotype.
- **5. A.** Failure of the urethral folds to fuse completely results in the external urethral orifice opening onto the ventral surface of the penis, a condition known as hypospadias.
- **6. C.** The gene product that is coded on the short arm of the Y chromosome is called the testes-determining factor (TDF).
- **7. B.** Sterility is a common result of bilateral cryptorchidism. When both testes fail to descend into the scrotum, the increased temperature to which they are exposed in the abdominal cavity will inhibit spermatogenesis.
- **8. A.** This is a classic case of testicular feminization syndrome. A karyotype analysis would reveal that this normal-appearing 17-year-old girl actually has a 46,XY genotype. The mobile masses within the right and left labia majora are the testes and should be surgically removed because this tissue has a propensity toward malignant tumor formation. The most common cause of this syndrome is a lack of androgen receptors in the phallus, urogenital folds, and labioscrotal swellings.

chapter **16** Integumentary System

I. SKIN

The skin consists of two layers: the outer layer (or **epidermis**) and the deeper connective tissue layer (or **dermis**). Skin functions as a barrier against infection, serves in thermoregulation, and protects the body against dehydration.

A. Epidermis. The epidermis is derived from the ectoderm.

- 1. Early development
 - **a.** Initially, the epidermis consists of a single layer of ectodermal cells that give rise to an overlying **periderm** layer.
 - **b.** The epidermis soon becomes a three-layered structure consisting of the **stratum basale** (mitotically active), **intermediate layer** (progeny of stratum basale), and the **periderm**.
 - **c.** Peridermal cells are eventually desquamated and form part of the **vernix caseosa**, a greasy substance of peridermal cells and sebum from the sebaceous glands that protects the embryo's skin.
- **2. Later development.** The definitive adult layers are formed through the inductive influence of the dermis. The ectodermal cells give rise to five cell layers:
 - a. Stratum basale (stratum germinativum)
 - b. Stratum spinosum
 - c. Stratum granulosum
 - d. Stratum lucidum
 - e. Stratum corneum. This layer is associated with the expression of 56-kDa keratin, 67-kDa keratin, and filaggrin (a binding protein).
- 3. Other cells of the epidermis
 - **a. Melanoblasts** are derived from **neural crest cells** that migrate into the stratum basal of the epidermis. They differentiate into melanocytes by mid-pregnancy, when pigment granules called **melanosomes** are observed.
 - **b.** Langerhans cells are derived from the **bone marrow (mesoderm)** and migrate into the epidermis. They are involved in antigen presentation.
 - **c. Merkel cells** are of uncertain origin. They are associated with free nerve endings and probably function as mechanoreceptors.
- **B. Dermis**. The dermis is derived from both the somatic mesoderm located just beneath the ectoderm and mesoderm of the dermatomes of the body. In the head and neck region, the dermis is derived from neural crest cells.

1. Early development

- **a.** The dermis is initially composed of loosely aggregated mesodermal cells frequently referred to as **mesenchymal cells** (or **mesenchyme**).
- **b.** The mesenchymal cells secrete a watery-type extracellular matrix rich in glycogen and hyaluronic acid.

2. Later development

- **a.** The mesenchymal cells differentiate into fibroblasts, which secrete increasing amounts of collagen and elastic fibers into the extracellular matrix.
- **b.** Vascularization occurs.
- **c**. Sensory nerves grow into the dermis.
- **d**. The dermis forms projections into the epidermis called **dermal papillae**, which contain tactile sensory receptors (e.g., Meissner corpuscles).

C. Clinical considerations

- 1. Oculocutaneous albinism (OCA) (Figure 16.1)
 - a. Type I OCA (tyrosinase negative; classic type; Figure 16.1) is an autosomal recessive genetic caused by a mutation in the *TYR* gene on chromosome 11q14, which encodes for the tyrosinase enzyme. This results in a disorder in which melanocytes fail to produce melanin pigment. Clinical features include pink skin, gray-blue eyes, and white hair at birth and throughout life. The photograph in Figure 16.1 shows a patient with Type I OCA.
 - b. Type II OCA (tyrosinase positive; Figure 16.2) is an autosomal recessive genetic disorder caused by a mutation in the OCA 2 gene on chromosome 15q11, which encodes for the P protein that is involved in the transport of tyrosine. This results in a disorder in which melanocytes produce some melanin pigment. Clinical features include pink skin, gray-blue eyes, and dark hair at birth, but the pigment of the skin, eyes, and hair increases as the patient ages. The photograph in Figure 16.2 shows a female African American child with type II OCA.
 - c. Piebaldism (Figure 16.3) is an autosomal dominant genetic disorder caused by a mutation in the **KIT** gene on chromosome 4q11, which encodes for a receptor tyrosine kinase. This results in a disorder in which there is a lack of melanin in isolated patches of skin and/or hair (i.e., a localized albinism). Clinical features include patches of depigmented skin around the mid-forehead, neck, anterior trunk, and mid-extremities. A white forelock is a common finding. Patients are otherwise healthy and have a normal life span. Albinism predisposes to basal cell carcinoma, squamous cell carcinoma, and malignant melanoma. The photograph in Figure 16.3 shows a female African American child with piebaldism.

FIGURE 16.1. Type I oculocutaneous albinism (OCA).

FIGURE 16.2. Type II oculocutaneous albinism (OCA) in a black female child.

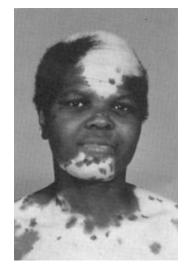


FIGURE 16.3. Piebaldism in a black female child.

- **2. Ichthyosis** refers to a group of cutaneous disorders characterized by increased or aberrant keratinization of the skin resulting in noninflammatory scaling, dryness, and cracks in the skin that may form deep fissures.
 - a. Ichthyosis vulgaris is an autosomal dominant genetic disorder caused by a mutation in the *FLG* gene on chromosome 1q21, which encodes for the filaggrin protein (a major component of keratohyalin). Clinical features include the mildest form of ichthyosis. It presents during childhood after 3 months of age, and appearance consists of fine white scales on the extensor surfaces of the extremities.
 - **b.** Lamellar ichthyosis is an autosomal recessive genetic disorder caused by a mutation in the *TGM1* gene on chromosome 14q11.2, which encodes for transglutaminase 1, which plays a role in the assembly of the cornified envelope of the squames. Clinical features include presentation as a "collodion baby" at birth; the infant is encased in a translucent, taut, parchment-like membrane. The parchment-like membrane dries out and is shed, leaving residual erythema and hyperkeratosis. Children and adults develop large, brown polygonal scales that involve the entire body.
 - c. Epidermolytic hyperkeratosis is an autosomal dominant genetic disorder caused by a mutation in either the *KRT1* gene on chromosome 12q11 for keratin 1 protein or the *KRT10* gene on chromosome 17q21 for keratin 10 protein. Keratins are intermediate filament proteins that form the cytoskeleton in all epithelial cells, including the stratified squamous epithelium of the skin. Clinical features include presentation in the neonatal period with widespread blistering and erythema. Children and adults develop generalized hyperkeratosis with dark scales and spiny ridges.
 - d. Harlequin fetus (Figure 16.4) is an autosomal recessive genetic disorder caused by a mutation in the ABCA12 gene on chromosome 2q34, which encodes for the adenosine triphosphate-binding cassette transporter (subfamily <u>A</u>, member <u>12</u>), which functions as a lipid transporter in keratinocytes. These mutations lead to impaired lipid secretion from lamellar granules in keratinocytes. Clinical features include the most severe form of ichthyosis. The fetus is encased by massive, armorlike plates of scale with deep fissures; the diamond-like configuration of the scales results in the appearance of a harlequin clown. Many such infants are stillborn or die shortly after birth. The photograph in Figure 16.4 shows a harlequin fetus.
- **3. Psoriasis** is a skin disease characterized by **excess cell proliferation** in the stratum basale and in the stratum spinosum. This results in thickening of the epidermis and shorter regeneration time of the epidermis.
- 4. Classic-type Ehlers-Danlos syndrome (EDS; Figure 16.5) is an autosomal dominant genetic disorder caused by a mutation either in the COL5A1 gene on chromosome 9q34.2-q34.3 for collagen α-1(V) chain protein or the COL5A2 gene on chromosome 2q31 for collagen α-2(V) chain protein. Clinical features include extremely stretchable and fragile skin; hypermobile joints; aneurysms of blood vessels; rupture of the bowel; and widened atrophic scars. The photograph in Figure

FIGURE 16.4. Harlequin fetus.

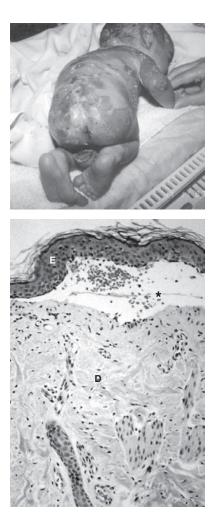
FIGURE 16.5. Ehlers-Danlos syndrome.

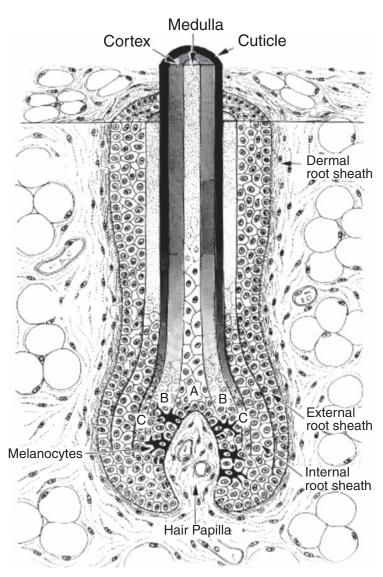
16.5 shows a child with EDS. Note the extremely stretchable skin and the cigarette paper scars over the knees (arrows).

5. Hemangiomas (Figure 16.6) are vascular malformations, that is, benign tumors of endothelial cells. They produce "birthmarks" on the skin. A port-wine stain is a birthmark covering the area of distribution of the trigeminal nerve (CN V) that is frequently associated with an hemangioma of the meninges called **Sturge-Weber syndrome**. The photograph in Figure 16.6 shows an infant with an aggressive hemangioma of the face covering the distribution of the trigeminal nerve.

FIGURE 16.6. Hemangioma of the face.

6. Junctional epidermolysis bullosa (JEB; Figure 16.7) is an autosomal recessive genetic disorder caused by a mutation in the LAMA5 gene on chromosome 20q13.2, which encodes for the **laminin** $\underline{\alpha 5}$ protein that is a component of hemidesmosomes. This results in a disorder in which the adhesion of the stratum basale to the basement membrane is weakened. Clinical features include onset at birth; widespread bulla (blister) formation, where the epidermis is intact but is separated from the underlying dermis; absent nails; dysplastic teeth; oral lesion. It is usually fatal by 3-4 years of age due to hypoproteinemia, anemia, and infection. The photograph in Figure 16.7 shows a young infant with widespread bullae (blisters) and erosion of the skin. The light micrograph shows a pathological cleft (asterisk) between the epidermis (E) and dermis (D). There is also some scarring in the dermis.




FIGURE 16.7. Epidermolysis bullosa.

II. HAIR AND NAILS

Hair and nails are derived from the ectoderm.

A. Hair (Figure 16.8)

- **1.** At week 12, cells from the stratum basale grow into the underlying dermis and form the **hair follicle**.
- 2. The deepest part of the hair follicle soon becomes club shaped to form the hair bulb.
- **3.** The hair bulbs are invaginated by mesoderm called the **hair papillae**, which are rapidly infiltrated by blood vessels and nerve endings.

FIGURE 16.8. Diagram of a hair and its follicle. The expanded lower end of the follicle contains a hair papilla. Formation and growth of the hair depend on the continuous proliferation (note cells in mitosis) and differentiation of cells around the tip of the hair papilla. Cells in region A give rise to the hair medulla. Cells in region B give rise to the hair cortex. Cells in region C give rise to the hair cuticle. Other peripheral cells give rise to the internal and external root sheath. Melanocytes contribute to hair color.

- **4.** The epithelial cells within the hair bulb differentiate into the **germinal matrix**, where cells proliferate, grow toward the surface, keratinize, and form the **hair shaft**. These cells also form the **internal root sheath**.
- **5.** Other epithelial cells of the hair follicle form the **external root sheath**, which is continuous with the epidermis and has a prominent subjacent basement membrane called the **glassy membrane**.
- 6. Mesodermal cells of the dermis that surround the invaginating hair follicle form the **dermal root sheath** and the **arrector pili muscle**.
- 7. The first fine hairs, called **lanugo hairs**, are sloughed off at birth.
- **B.** Nails develop from the epidermis. The nails first develop on the tips of the digits and then migrate to the dorsal surface, taking their innervation with them; this is why the median nerve innervates the dorsal surface of three and one-half digits (I–IV).

C. Clinical considerations

- **1.** Alopecia is baldness resulting from an absence or faulty development of the hair follicles.
- **2. Hypertrichosis** is an overgrowth of hair. It is frequently associated with spina bifida occulta, which is seen as a patch of hair overlying the defect.
- **3. Pili torti (Figure 16.9)** is a familial disorder characterized by **twisted hairs**. It is seen in **Menkes (kinky-hair) disease**, an X-linked recessive neurological disorder involving a defect in intestinal copper transport. The photograph in Figure 16.9 shows pili torti or twisted hair condition.

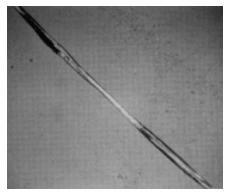


FIGURE 16.9. Pili torti.

4. Trichorrhexis nodosa (Figure 16.10) is brittle hair that breaks easily and is usually associated with metabolic disorders like **argininosuccinic aciduria**. Argininosuccinic aciduria is an autosomal recessive genetic disorder that causes a deficiency in the enzyme argininosuccinase of the urea cycle. The photograph in Figure 16.10 shows the trichorrhexis nodosa or brittle hair condition.

FIGURE 16.10. Trichorrhexis nodosa.

200 BRS Embryology

5. Beaded hair (Figure 16.11) is characterized by elliptical nodes along the hair, which breaks easily at the internodes and is usually associated with **monilethrix**. Monilethrix is an autosomal dominant genetic disorder. The photograph in Figure 6-11shows the beaded hair condition.

FIGURE 16.11. Beaded hair.

6. Trichothiodystrophy (Figure 16.12) is a very rare autosomal recessive genetic disorder characterized by short, brittle hair with alternating light and dark bands called **tiger-tail hair**. The photograph in Figure 6-12 shows the trichothiodystrophy condition.

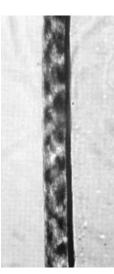


FIGURE 16.12. Tiger-tail hair.

7. Uncombable hair syndrome (spun-glass hair; Figure 16.13) is an autosomal dominant genetic disorder characterized by blonde, dry, shiny hair that cannot be combed into place. The hair has a triangular shape with a canal-like groove called pili trianguli et canaliculi. The photograph in Figure 16.13 shows the uncombable hair syndrome. Note the triangular-shaped hair with canal-like groove.

FIGURE 16.13. Uncombable hair syndrome.

III. MAMMARY, SWEAT, AND SEBACEOUS GLANDS

Mammary, sweat, and sebaceous glands are all derived from the surface ectoderm.

A. Mammary glands (Figure 16.14)

- Mammary glands develop from the mammary ridge, a downgrowth of the epidermis (ectoderm) into the underlying dermis (mesoderm).
- **2.** Canalization of these epithelial downgrowths results in formation of **alveoli** and **lactiferous ducts**.
- **3.** The lactiferous ducts drain into an epithelial pit, the future **nipple**.
- **4.** The Tanner stages of breast development are guidelines in assessing whether a female adolescent is developing normally:
 - a. Stage I: Breasts have papillae elevations only
 - **b. Stage II**: Breasts have palpable buds, and areolae enlarge
 - **c. Stage III:** Breasts show elevation of contours, and areolae enlarge
 - d. Stage IV: Breasts form secondary areolar mounds
 - e. Stage V: Breasts show adult breast contour, areolae recess to the general contour of the breast, and the nipples project
- B. Eccrine and apocrine sweat glands develop from downgrowths of the epidermis into the underlying dermis.
- **C. Sebaceous glands** develop from the epithelial wall of the hair follicle and elaborate **sebum** into the hair follicles. The tarsal (meibomian) glands of the eyelids do not communicate with hair follicles.

D. Clinical considerations

1. **Gynecomastia (Figure 16.15)** is a condition in which there is excessive development of the male mammary glands. It is frequently associated with Klinefelter syndrome (47,XXY). The photograph in Figure 16.15 shows gynecomastia in a male with Klinefelter syndrome.

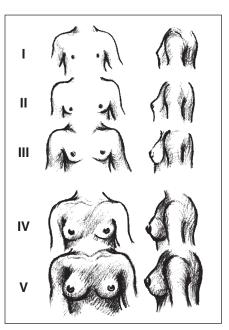


FIGURE 16.14. The Tanner stages of breast development.

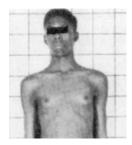


FIGURE 16.15. Gynecomastia.

202 BRS Embryology

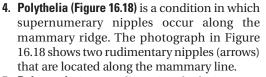

2. Breast hypertrophy (Figure 16.16) may occur early in infancy. The photograph in Figure 16.16 shows breast hypertrophy in a 1-month-old female infant.

FIGURE 16.16. Breast hypertrophy.

- **3. Breast hypoplasia (Figure 16.17)** generally occurs asymmetrically when one breast fails to develop completely. The photograph in Figure 16.17 shows breast hypoplasia of the right breast in a 16-year-old female.

FIGURE 16.17. Breast hypoplasia.

5. Polymastia is a condition in which supernumerary breasts occur along the mammary ridge.

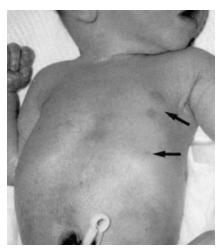


FIGURE 16.18. Polythelia.

IV. TEETH (FIGURE 16.19)

A. Development

- 1. The teeth develop from ectoderm and an underlying layer of neural crest cells.
- **2.** The **dental lamina** develops from the oral epithelium (ectoderm) as a downgrowth into the underlying neural crest layer.
- 3. The dental lamina gives rise to tooth buds, which develop into the enamel organs.
- **4.** The enamel **organs** are derived from ectoderm and develop first for the 20 deciduous teeth, then for the 32 permanent teeth.
- 5. The enamel organs give rise to **ameloblasts**, which produce **enamel**.
- 6. The **dental papillae** are formed by neural crest cells that underlie the enamel organs.
- 7. The dental papillae give rise to the **odontoblasts** (which produce **predentin** and **dentin**) and **dental pulp**.
- **8**. The **dental sacs** are formed by a condensation of neural crest cells that surrounds the dental papillae.
- 9. The dental sacs give rise to **cementoblasts** (which produce **cementum**) and the **periodontal ligaments**.

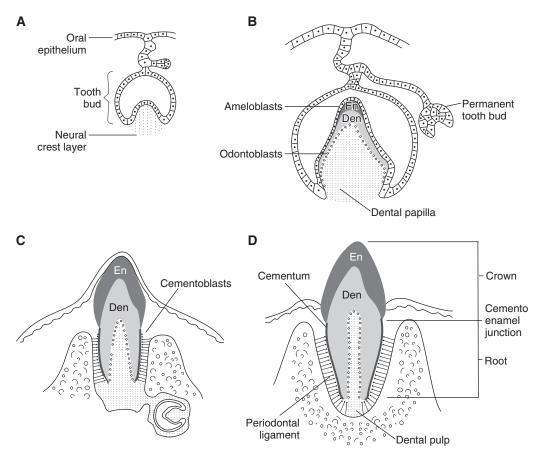


FIGURE 16.19. The successive stages in the development of a tooth. (A) At week 8. (B) At week 28. Note the formation of enamel (En) by ameloblasts and dentin (Den) by odontoblasts. (C) At month 6 postnatal. Note the early tooth eruption. (D) At month 18 postnatal. Note the fully erupted deciduous tooth. Ameloblasts are no longer present, which means further enamel formation is not possible.

204 BRS Embryology

B. Clinical considerations

- 1. Defective enamel formation (amelogenesis imperfecta) is an autosomal dominant trait.
- 2. Defective dentin formation (dentinogenesis imperfecta) is an autosomal dominant trait.
- **3.** Vitamin A deficiency (Figure 16.20). If the vitamin A deficiency is severe, ameloblast cells will atrophy, which results in the absence of enamel. In less severe cases, there is **enamel hypoplasia**. The drawing in Figure 16.20 shows the clinical appearance of teeth in vitamin A deficiency.
- 4. Vitamin D deficiency (Figure 16.21). A severe vitamin D deficiency in children results in rickets, a condition characterized by insufficient deposition of calcium in bony tissue. In teeth, vitamin D deficiency is manifested by **enamel and dentin hypoplasia**. The drawing in Figure 16.21 shows the clinical appearance of teeth in vitamin D deficiency.
- 5. Tetracycline discoloration (Figure 16.22). If tetracycline antibiotics are administered to a pregnant woman, permanent brown-gray staining of the teeth will result in the child. Tetracycline is deposited in bone and teeth during mineralization. The photograph in Figure 16.22 shows the clinical appearance of teeth in tetracycline staining.

FIGURE 16.20. Clinical appearance of teeth in vitamin A deficiency.

FIGURE 16.21. Clinical appearance of teeth in vitamin D deficiency.

FIGURE 16.22. Clinical appearance of teeth in tetracycline staining.

Study Questions for Chapter 16

- **1.** Melanocytes are found in which epidermal layer?
- (A) Stratum basale
- (B) Stratum corneum
- (C) Stratum granulosum
- (D) Stratum lucidum
- (E) Stratum spinosum

2. A young black girl shows isolated patches of skin and hair that lack melanin pigment. In addition, other skin lesions are observed that look suspiciously like a malignant melanoma. What is the most likely diagnosis?

- (A) Type I oculocutaneous albinism
- (B) Type II oculocutaneous albinism
- (C) Piebaldism
- (D) Ichthyosis
- (E) Psoriasis

3. A young infant shows extremely stretchable and fragile skin, hypermobile joints, and cigarette-paper scars over the knees. What is the most likely diagnosis?

- (A) Ehlers-Danlos syndrome
- (B) Junctional epidermolysis bullosa
- (C) Psoriasis
- (D) Ichthyosis
- (E) Piebaldism

4. A young infant shows skin blisters over the entire body with generalized skin erosion. Pathology indicates a cleft between the epidermis and dermis. What is the most likely diagnosis?

- (A) Psoriasis
- (B) Junctional epidermolysis bullosa
- (C) Ichthyosis
- (D) Ehlers-Danlos syndrome
- (E) Type II oculocutaneous albinism

5. The administration of which of the following agents may result in discoloration of both deciduous and permanent teeth?

- (A) Cephalosporin
- (B) Chloramphenicol
- (C) Erythromycin
- (D) Penicillin
- (E) Tetracycline

Answers and Explanations

- **1. A.** Melanocytes are found in the stratum basale, the deepest layer of the epidermis, at the dermoepidermal junction.
- **2. C.** Piebaldism is an autosomal dominant disorder and is basically a localized albinism.
- **3. A.** Ehlers-Danlos syndrome is an autosomal dominant disorder involving the gene for peptidyl lysine hydroxylase.
- **4. B**. Junctional epidermolysis bullosa refers to a group of autosomal recessive disorders caused by a mutation in the gene for laminin 5.
- **5. E**. Tetracyclines are bound to calcium in newly formed teeth both in utero and in young children. They may cause discoloration and enamel dysplasia.

chapter 17 Skeletal System

I. SKULL (FIGURE 17.1)

The skull can be divided into two parts: the neurocranium and viscerocranium.

A. Neurocranium

- **1.** The neurocranium consists of the flat bones of the skull (cranial vault) and the base of the skull.
- **2.** The neurocranium develops from neural crest cells, except for the basilar part of the occipital bone, which forms from mesoderm of the occipital sclerotomes.

B. Viscerocranium

- **1**. The viscerocranium consists of the bones of the face involving the pharyngeal arches.
- **2.** The viscerocranium develops from neural crest cells, except for the laryngeal cartilages, which form from mesoderm within pharyngeal arches 4 and 6.

C. Sutures

- **1.** During fetal life and infancy, the flat bones of the skull are separated by dense connective tissue (fibrous joints) called **sutures**.
- 2. There are five sutures: frontal suture, sagittal suture, lambdoid suture, coronal suture, and squamous suture.
- **3.** Sutures allow the flat bones of the skull to deform during childbirth (called **molding**) and to expand during childhood as the brain grows.
- **4.** Molding may exert considerable tension at the **"obstetrical hinge"** (junction of the squamous and lateral parts of the occipital bone) such that the **great cerebral vein (of Galen)** is ruptured during childbirth.
- **D.** Fontanelles are large, fibrous areas where several sutures meet. There are six fontanelles: anterior fontanelle, posterior fontanelle, two sphenoid fontanelles, and two mastoid fontanelles.
 - **1**. The anterior fontanelle is the largest fontanelle and is readily palpable in the infant.
 - **2.** The anterior fontanelle pulsates because of the underlying cerebral arteries and can be used to obtain a blood sample from the underlying **superior sagittal sinus**.
 - **3.** The **anterior fontanelle** and the **mastoid fontanelles** close at about **2 years of age** when the main growth of the brain ceases.
 - 4. The posterior fontanelle and the sphenoid fontanelles close at about 6 months of age.

E. Clinical considerations

- 1. Abnormalities in skull shape may result from failure of cranial sutures to form or from premature closure of sutures (craniosynostoses).
 - **a**. **Microcephaly** results from failure of the brain to grow; it is usually associated with mental retardation.

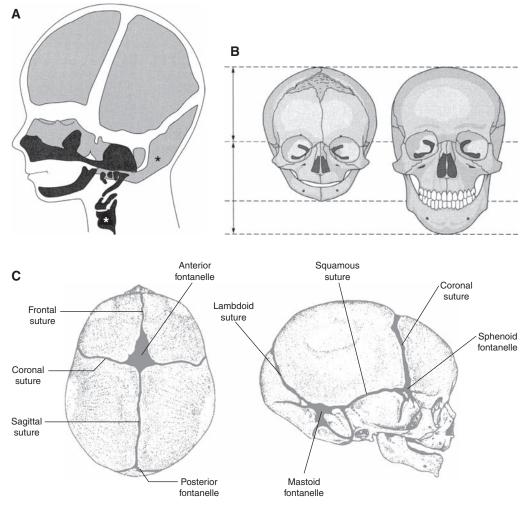


FIGURE 17.1. (A) A diagram of the newborn skull indicating the neurocranium (*shaded area*) and the viscerocranium (*black area*). The bones of the neurocranium and viscerocranium are derived almost entirely from neural crest cells, except for the basilar part of the occipital bone (*asterisk*), which forms from mesoderm of the occipital sclerotomes, and the laryngeal cartilages (*asterisk*), which form from mesoderm within pharyngeal arches 4 and 6. (B) A diagram depicting the postnatal growth of the skull. After birth, the skull continues ossification towards the sutures. However, the face is relatively underdeveloped and undergoes dramatic changes during childhood and adolescence with the eruption of teeth, formation of sinuses, and elongation of the maxilla and mandible. Note that the profound postnatal changes of the skull are due to the development of the viscerocranium. (C) Diagram of the sutures and fontanelles.

- b. Oxycephaly (turricephaly or acrocephaly) is a tower-like skull caused by premature closure of the lambdoid and coronal sutures. It should be differentiated from Crouzon syndrome, which is a dominant genetic condition with a presentation quite similar to that of oxycephaly but is accompanied by malformations of the face, teeth, and ears.
- **c. Plagiocephaly (Figure 17.2)** is an asymmetrical skull caused by premature closure of the **lambdoid and coronal sutures** on one side of the skull. The photograph in Figure 17.2 shows an infant with plagiocephaly.

FIGURE 17.2. Plagiocephaly.

d. Brachycephaly (Figure 17.3) is a short, square-shaped skull caused by premature closure of the **coronal sutures**. The radiograph in Figure 17.3 shows the condition of brachycephaly.

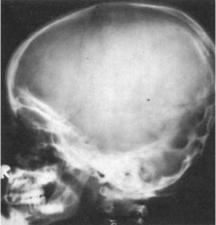


FIGURE 17.3. Brachycephaly.

e. Scaphocephaly (Figure 17.4) is a long skull (in the anterior/posterior plane) caused by premature closure of the **sagittal suture**. The photograph in Figure 17.4 shows an infant with scaphocephaly.

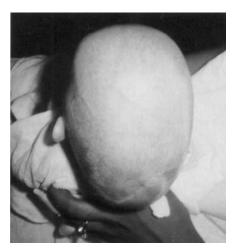


FIGURE 17.4. Scaphocephaly.

210 BRS Embryology

f. Kleeblattschädel (Figure 17.5) is a cloverleaf skull caused by premature closure of all sutures, forcing the brain growth through the anterior and sphenoid fontanelles. The photograph in Figure 17.5 shows a child with Kleeblattschädel.

- g. Crouzon syndrome (Figure 17.6) is an autosomal dominant genetic disorder caused by a mutation in the *FGFR2* gene on chromosome 10q25.3, which encodes for fibroblast growth factor receptor 2. The mutation results in constitutive activation of the FGFR2 receptor (i.e., a gain-of-function mutation). Clinical features include premature craniosynostosis; midface hypoplasia with shallow orbits; ocular proptosis; mandibular prognathism; normal extremities; progressive hydrocephalus; and no mental retardation. The photograph in Figure 17.6 shows a child with Crouzon syndrome.
- h. Apert syndrome (Figure 17.7) is an autosomal dominant genetic disorder caused by a mutation in the *FGFR2* gene on chromosome 10q25.3, which encodes for <u>fibroblast</u> growth <u>factor receptor 2</u>. Clinical features include craniosynostosis leading to turribrachycephaly; syndactyl of hands and feet; various ankyloses; progressive synostoses of the hands, feet, and cervical spine; and mental retardation. The photograph in Figure 17.7 shows a child with Apert syndrome.

FIGURE 17.5. Kleeblattschädel.

FIGURE 17.6. Crouzon syndrome.

FIGURE 17.7. Apert syndrome.

- i. Pfeiffer syndrome (Figure 17.8) is an autosomal dominant genetic disorder caused by a mutation in the FGFR1 gene on chromosome 8p12, which encodes for fibroblast growth factor receptor 1, or the FGFR2 gene on chromosome 10q25.3, which encodes for fibroblast growth factor receptor 2. Clinical features include craniosynostosis leading to turribrachycephaly; syndactyl of hands and feet; and broad thumbs and great toes. The photograph in Figure 17.8 shows a child with Pfeiffer syndrome.
- 2. Temporal bone formation
 - **a. Mastoid process.** This portion of the temporal bone is absent at birth, which leaves the **facial nerve (CN VII)** relatively unprotected as it emerges from the stylomastoid foramen. In a difficult delivery, forceps may damage CN VII. The mastoid process forms by 2 years of age.

FIGURE 17.8. Pfeiffer syndrome.

- **b. Petrosquamous fissure.** The petrous and squamous portions of the temporal bone are separated by the petrosquamous fissure, which opens directly into the mastoid antrum of the middle ear. This fissure, which may remain open until 20 years of age, provides a route for the spread of infection from the middle ear to the meninges.
- 3. Spheno-occipital joint is a site of growth up to about 20 years of age.

II. VERTEBRAL COLUMN (FIGURE 17.9)

A. Vertebrae in general

- 1. Mesodermal cells from the sclerotome migrate and condense around the notochord to form the **centrum**, around the neural tube to form the **vertebral arches**, and in the body wall to form the **costal processes**.
- 2. The centrum forms the vertebral body.
- **3.** The vertebral arches form the **pedicles**, **laminae**, **spinous process**, **articular processes**, and the **transverse processes**.
- 4. The costal processes form the **ribs**.
- B. The atlas (C1) and axis (C2) are highly modified vertebrae.
 - 1. The atlas has no vertebral body or spinous process.
 - 2. The axis has an odontoid process (dens), which represents the vertebral body of the atlas.
- **C. Sacrum** is a large triangular fusion of five sacral vertebrae forming the posterior/superior wall of the pelvic cavity.
- **D.** Coccyx is a small triangular fusion of four rudimentary vertebrae.
- E. Intersegmental position of vertebrae
 - **1.** As mesodermal cells from the sclerotome migrate towards the notochord and neural tube, they split into a **cranial portion** and a **caudal portion**.
 - **2.** The caudal portion of each sclerotome fuses with the cranial portion of the succeeding sclerotome, which results in the intersegmental position of the vertebra.

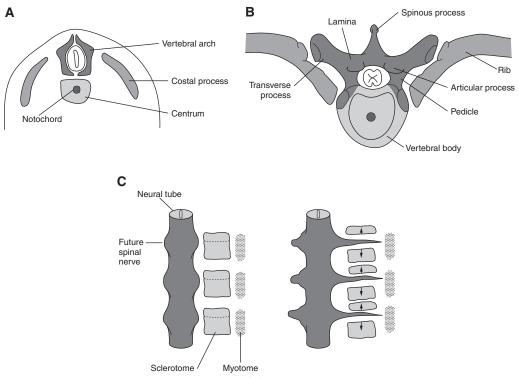


FIGURE 17.9. Development of a typical thoracic vertebra. (A) At about 5–7 weeks. Mesodermal cells from the sclerotome demonstrate three distinct condensations: centrum, vertebral arch, and costal process. At birth, three ossification centers are present: one in the centrum and one in each vertebral arch. At 3–5 years of age the vertebral arches fuse with each other and to the centrum. Ossification ends at about 25 years of age. (B) Adult. Each condensation develops into distinct components of the adult vertebrae, as indicated by the shading. (C) Diagram depicting the splitting of the sclerotome into caudal and cranial portions as the spinal nerves grow out to innervate the myotome. The dotted lines indicate where the sclerotome splits, thus allowing the growing spinal nerve to reach the myotome.

- **3.** The splitting of the sclerotome is important because it allows the developing spinal nerve a route of access to the myotome, which it must innervate.
- **4.** In the cervical region, the caudal portion of the fourth occipital sclerotome (O4) fuses with cranial portion of the first cervical (C1) sclerotome to form the base of the occipital bone, which allows C1 spinal nerve to exit between the **base of the occipital bone and C1 vertebrae**.

F. Curves

- **1.** The **primary curves** are **thoracic** and **sacral curvatures** that form during the fetal period.
- **2.** The **secondary curves** are **cervical** and **lumbar curvatures** that form after birth as a result of lifting the head and walking, respectively.

G. Joints of the vertebral column

- 1. Synovial joints
 - a. The atlanto-occipital joint lies between C1 (atlas) and the occipital condyles.
 - **b.** The **atlanto-axial joint** lies between C1 (atlas) and C2 (axis).
 - c. Facets (zygapophyseal) are joints between the inferior and superior articular facets.
- 2. Secondary cartilaginous joints (symphyses)
 - **a.** Symphyses are the joints between the vertebral bodies in which the **intervertebral disks** play a role. An intervertebral disk consists of the following:
 - **i. Nucleus pulposus.** This is a remnant of the embryonic **notochord**. By 20 years of age, all notochordal cells have degenerated such that all notochordal vestiges in the adult are limited to just a noncellular matrix.
 - **ii. Annulus fibrosus.** This is an outer rim of fibrocartilage derived from mesoderm found between the vertebral bodies.

H. Clinical considerations

1. Congenital brevicollis (Klippel-Feil syndrome; Figure 17.10) results from fusion and shortening of the cervical vertebrae. It is associated with shortness of neck, low hairline, and limited motion of head and neck. The radiograph in Figure 17.10 shows congenital fusion of the cervical vertebrae.

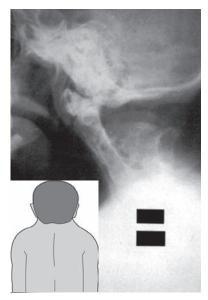


FIGURE 17.10. Congenital brevicollis.

- 2. Intervertebral disk herniation (Figure 17.11) involves the prolapse of the nucleus pulposus through the defective annulus fibrosis into the vertebral canal. The nucleus pulposus impinges on spinal roots and results in root pain, radiculopathy. The magnetic resonance imaging (MRI) shows protrusion of the L2 disk causing extradural compression of cauda equina nerve roots (*arrows*).

FIGURE 17.11. Intervertebral disk herniation.

3. Spina bifida occulta (Figure 17.12) results from failure of the vertebral arches to form or fuse. The drawing in Figure 17.12 shows spina bifida occulta.

FIGURE 17.12. Spina bifida occulta.

214 BRS Embryology

- Spondylolisthesis (Figure 17.13) occurs when the pedicles of the vertebral arches fail to fuse with the vertebral body. This allows the vertebral body to move anterior with respect to the vertebrae below it, causing lordosis. Congenital spondylolisthesis usually occurs at the L5–S1 vertebral level. The drawing in Figure 17.13 shows spondylolisthesis. Note the congenital absence of pedicles (*arrows*).
- **5. Hemivertebrae (Figure 17.14)** occur when wedges of vertebrae appear that are usually situated laterally between two other vertebrae. The radiograph in Figure 17.14 shows a hemivertebra (*arrow*).

6. Vertebral bar (Figure 17.15) occurs when there is a localized failure of segmentation on one side of the column, usually in a posterolateral site. The MRI in Figure 17.15 shows partial fusion (*solid arrow*) of the L4–L5 vertebral bodies posteriorly. Note the single fused spinous process (*open arrow*).

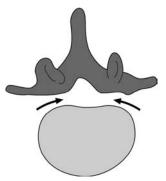


FIGURE 17.13. Spondylolisthesis.

FIGURE 17.14. Hemivertebrae.

FIGURE 17.15. Vertebral bar.

7. Block vertebra (Figure 17.16) occurs when there is a lack of separation between two or more vertebrae, usually occurring in the lumbar region. The drawing in Figure 17.16 shows a block vertebra.

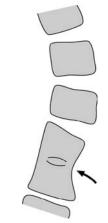


FIGURE 17.16. Block vertebra.

8. Cleft vertebra (Figure 17.17) occurs when a cleft develops in the vertebra, usually in a coronal or sagittal plane in the lumbar region. The drawing in Figure 17.17 shows both a coronal and a sagittal cleft vertebra. The radiograph shows coronal clefts in vertebrae L1, L2, and L4 (*arrows*).

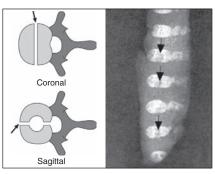


FIGURE 17.17. Coronal and sagittal cleft vertebrae.

9. Idiopathic scoliosis (Figure 17.18) is a lateral deviation of the vertebral column that exhibits both deviation and rotation of vertebral bodies. The photograph in Figure 17.18 shows a forward-bending patient with scoliosis, a position that will reveal even very small curvatures. The prominence (*arrow*) is produced by chest wall asymmetry.

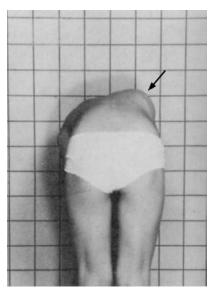


FIGURE 17.18. Scoliosis.

III. RIBS

A. Development in general. Ribs develop from costal processes, which form at all vertebral levels. However, only in the thoracic region do the costal processes grow into ribs.

B. Clinical considerations

- 1. Accessory lumbar ribs are the most common.
- 2. Accessory cervical ribs
 - **a**. These ribs are attached to the C7 vertebrae and may end either freely or attached to the thoracic cage.
 - **b.** Accessory cervical ribs may put pressure on the lower trunk of the brachial plexus and subclavian artery, causing superior **thoracic outlet syndrome**.

IV. STERNUM

A. Development in general. The sternum develops from two sternal bars that form in the ventral body wall independent of the ribs and clavicle. The sternal bars fuse with each other in a cranial–caudal direction to form the **manubrium**, **body**, and **xiphoid process** by week 8.

B. Clinical considerations

- **1. Sternal cleft** occurs when the sternal bars do not fuse completely. It is fairly common and, if small, is generally of no clinical significance.
- **2. Pectus excavatum (funnel chest)** is the most common chest anomaly, consisting of a depression of the chest wall that may extend from the manubrium to the xiphoid process. In addition to the cosmetically challenging appearance, these individuals demonstrate cardiopulmonary restriction, drooped shoulders, protuberant abdomen, and scoliosis such that early surgical intervention is generally recommended.

V. BONES OF THE LIMBS AND LIMB GIRDLES

A. Development in general

- **1**. The bones of the limb and limb girdles develop from condensations of lateral plate mesoderm within the limb buds.
- 2. The limb buds are visible at week 4 of development; the upper limb appears first.
- **3**. The limbs are well differentiated at week 8.
- **4**. The limb tip contains the **apical ectodermal ridge**, which exerts an inductive influence on limb growth and development.

B. Clinical considerations

- **1. Amelia** (an absence of one or two extremities) may result from the use of the teratogen **thalidomide**.
- **2. Polydactyly** is an autosomal dominant disorder that is characterized by the presence of extra digits on the hands and feet.
- **3. Syndactyly** (webbed fingers or toes), the most common limb anomaly, results from failure of the hand or foot webs to degenerate between the digits.
- **4. Holt-Oram syndrome (heart–hand syndrome)** is an autosomal dominant disorder associated with chromosome 12 that causes anomalies of the upper limb and heart.

VI. OSTEOGENESIS

Osteogenesis occurs through the conversion of preexisting connective tissue (mesoderm) into bone. This process is called **ossification**. During development, two types of ossification occur:

A. Intramembranous ossification

- 1. Intramembranous ossification occurs in the embryo when mesoderm condenses into sheets of highly vascular connective tissue, which then **directly** forms a primary ossification center.
- 2. Bones that form via intramembranous ossification are frontal bone, parietal bones, intraparietal part of occipital bone, maxilla, and zygomatic bone, squamous part of temporal bone, palatine, vomer, and mandible.

B. Endochondral ossification

- 1. Endochondral ossification occurs in the embryo when mesoderm first forms a hyaline cartilage model, which then develops a primary ossification center at the diaphysis.
- Bones that form via endochondral ossification are ethmoid bone, sphenoid bone, petrous and mastoid parts of the temporal bone, basilar part of the occipital bone, incus, malleus, stapes, styloid process, hyoid bone, bones of the limbs, limb girdles, vertebrae, sternum, and ribs.

VII. GENERAL SKELETAL ABNORMALITIES

A. Achondroplasia (AC; Figure 17.19) is an autosomal dominant genetic disorder caused by a mutation in the FGFR3 gene on chromosome 4p16, which encodes for fibroblast growth factor receptor 3. The mutation results in constitutive activation of FGFR3 (i.e., a gain-of-function mutation). Approximately 80% of AC cases are not inherited but result from a de novo mutation that occurs during spermatogenesis in the unaffected advancedaged father. Chances of AC increase with increasing paternal age. Pathological features include changes at the epiphyseal growth plate, where the zones of proliferation and hypertrophy are narrow and disorganized, and eventual growth of horizontal struts of bone into the growth plate, "sealing" the bone and thereby preventing bone growth. Clinical features include short stature, proximal shortening of arms and legs with redundant skin folds, limitation of elbow extension, trident configuration of hands, bowlegs, thoracolumbar gibbus in infancy, exaggerated lumbar lordosis, large head with frontal bossing, and midface hypoplasia. The photograph in Figure 17.19 shows a man with achondroplasia. Note the lordotic curve.

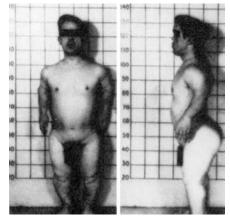


FIGURE 17.19. Achondroplasia.

218 BRS Embryology

- B. Marfan syndrome (MS; Figure 17.20) is an autosomal dominant genetic disorder caused by a mutation in the FBN1 gene on chromosome 15q21.1, which encodes for the fibrillin protein, which is an essential component of elastic fibers. Clinical features include unusual height, exceptionally long, thin limbs, pectus excavatum ("hollow chest"), ectopia lentis (dislocation of the lens), severe near-sightedness (myopia), and dilation or dissection of the aorta at the level of the sinuses of Valsalva, which may lead to cardiomyopathy or even a rupture of the aorta, dural ectasia, and mitral valve prolapse. The photograph in Figure 17.20 shows a boy with Marfan syndrome. Note the deformities of the sternum and spine.
- C. Osteogenesis imperfecta types I–IV (OI; Figure **17.21**) are autosomal dominant genetic disorders caused by a mutation in the COL1A1 gene on chromosome 17q21.3-q22, which encodes for the collaqen α -1(I) chain protein, or the **COL1A2** gene on chromosome 7q22.1, which encodes for <u>collagen α -</u> 2(1) chain protein. OI is a group of disorders with a continuum ranging from perinatal lethality \rightarrow severe skeletal deformities \rightarrow nearly asymptomatic individuals. Clinical features include extreme bone fragility with spontaneous fractures, short stature with bone deformities, gray or brown teeth, blue sclera of the eye, and progressive postpubertal hearing loss. Milder forms of OI may be confused with child abuse. Severe forms of OI are fatal in utero or during the early neonatal period. The radiograph in Figure 17.21 shows an infant with OI. Note the multiple bone fractures of the upper and lower limbs, resulting in an accordion-like shortening of the limbs.

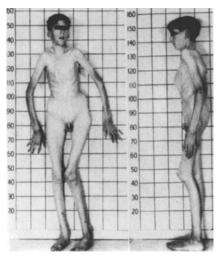


FIGURE 17.20. Marfan syndrome.

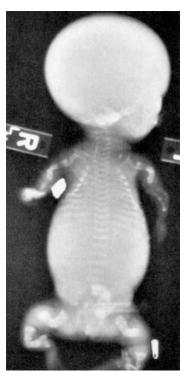


FIGURE 17.21. An infant with osteogenesis imperfecta (OI).

- **D.** Acromegaly (Figure 17.22) results from hyperpituitarism. It is characterized by a large jaw, hands, and feet and sometimes by gigantism. The upper photograph in Figure 17.22 shows a 22-year-old man before he developed telltale signs of acromegaly. The lower photograph shows the same man at 39 years old with the distinct facial appearance of acromegaly.
- E. Cretinism occurs when there is a deficiency in fetal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) and/or thyroid agenesis. Cretinism results in growth retardation, skeletal abnormalities, mental retardation, and neurological disorders. It is rare except in areas where there is a lack of iodine in the water and soil.

FIGURE 17.22. Acromegaly.

Study Questions for Chapter 17

- **1.** Accessory ribs are most commonly found attached to the
- (A) cervical vertebrae
- (B) thoracic vertebrae
- (C) lumbar vertebrae
- (D) manubrium
- (E) sternebrae
- **2**. The anterior fontanelle is usually closed by
- (A) birth
- (B) age 6 months
- (C) age 18 months
- (D) age 2 years
- (E) age 5 years

3. The condition where the pedicles of the vertebral arches fail to fuse with the vertebral body is called

- (A) block vertebrae
- (B) cleft vertebrae
- (C) hemivertebrae
- (D) spondylolisthesis
- (E) spina bifida occulta

4. During an ultrasound examination, numerous fractures of the long bones of the fetus are observed. This condition is called

- (A) achondroplasia
- (B) osteogenesis imperfecta
- (C) Marfan syndrome
- (D) cretinism
- (E) acromegaly

5. A female newborn presents with a squareshaped skull with a short occipital–frontal diameter. Premature closure of which of the following sutures is the most likely cause of this finding?

- (A) Sphenofrontal
- (B) Sphenoparietal
- (C) Lambdoidal
- (D) Sagittal
- (E) Coronal

Answers and Explanations

- **1. C.** Accessory ribs are most commonly attached to lumbar vertebrae. When present (incidence 0.5%–1%), a cervical rib is usually attached to the seventh cervical vertebra. Cervical ribs may compress the brachial plexus and subclavian vessels and cause superior thoracic outlet syndrome.
- **2. D**. The anterior fontanelle is usually closed by 2 years of age; the posterior and sphenoid fontanelles are usually closed by the end of 6 months of age.
- **3. D**. When the pedicles fail to fuse with the vertebral body, a condition called spondylolisthesis results. This allows the vertebral body to move anterior with respect to the vertebrae below, it causing lordosis.
- **4. B**. Osteogenesis imperfecta is a deficiency of type I collagen and results in spontaneous fractures of fetal bones and blue sclera of the eye.
- **5. E.** Brachycephaly is the premature closure of the coronal sutures, which leads to a square-shaped skull with a short occipital–frontal diameter.

chapter **18** Muscular System

I. SKELETAL MUSCLE

A. Molecular events

- 1. Mesodermal (mesenchymal) cells within somites become committed to a muscle-forming cell line through a poorly understood mechanism to form myogenic cells.
- 2. Myogenic cells enter the cell cycle (i.e., undergo mitosis), which is stimulated by FGF (fibroblast growth factor) and **TGF-B** (transforming growth factor).
- 3. Pax-3 and myf-5 stimulate myogenic cells to begin expression of MyoD (a helix-loophelix transcription factor).
- 4. MyoD binds to the **E box** (CANNTG) on DNA, which removes the myogenic cells from the cell cycle (i.e., mitosis stops) and switches on **muscle-specific genes** to form **postmitotic** mvoblasts.
- 5. Myoblasts begin to synthesize **actin** and **myosin** while they fuse with each other to form multinucleated myotubes.
- 6. Myotubes synthesize actin, myosin, troponin, tropomyosin, and other muscle proteins. These proteins aggregate into **myofibrils**, at which stage the cells are called **muscle fibers**.
- 7. Because muscle fibers are postmitotic, further growth is accomplished by means of satellite cells, which operate by poorly understood mechanisms.

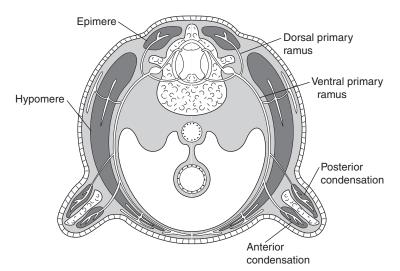
B. Paraxial mesoderm

- **1.** Paraxial mesoderm is a thick plate of mesoderm on each side of the midline.
- 2. The paraxial mesoderm becomes organized into segments known as somitomeres, which form in a craniocaudal sequence.
- **3.** Somitomeres 1–7 do not form somites but contribute mesoderm to the head and neck region (pharyngeal arches).
- 4. The remaining somitomeres further condense in a craniocaudal sequence to form 42–44 pairs of somites of the trunk region.
- 5. The somites closest to the caudal end eventually disappear, to give a final count of approximately **35 pairs of somites**.
- **6.** Somites further differentiate into the sclerotome (cartilage and bone component), myotome (muscle component), and dermatome (dermis of skin component).

C. Head and neck musculature

- 1. Head and neck musculature is derived from somitomeres 1–7 of the head and neck region, which participate in the formation of the pharyngeal arches.
- 2. Extraocular muscles are derived from somitomeres 1–3 and 5. Somitomeres 1–3 are called preotic myotomes. The extraocular muscles are innervated by cranial nerve (CN) III, CN IV, and CN VI.
- **3.** Tongue muscles are derived from occipital myotomes. The tongue muscles are innervated by CN XII.

D. Trunk musculature (Figure 18.1)


1. Trunk musculature is derived from myotomes in the trunk region. Each myotome partitions into a dorsal **epimere** and a ventral **hypomere**.

a. Epimere

- i. **The epimere** develops into the extensor muscles of the neck and vertebral column (e.g., erector spinae).
- ii. The epimere is innervated by dorsal rami of spinal nerves.

b. Hypomere

- **i. The hypomere** develops into the scalene, prevertebral, geniohyoid, infrahyoid, intercostal, abdominal muscles, lateral and ventral flexors of the vertebral column, quadratus lumborum, and pelvic diaphragm.
- ii. The hypomere is innervated by ventral rami of spinal nerves.

FIGURE 18.1. Trunk and limb musculature. Drawing of a transverse section through the thorax and limb bud, showing the muscles of the epimere, hypomere, and the limb bud. The limb bud musculature develops from mesoderm of various myotomes. The epimeric muscles are innervated by dorsal primary rami, and the hypomeric and limb muscles are innervated by ventral primary rami of spinal nerves.

E. Limb musculature

- **1.** Limb musculature is derived from myotomes (somites) in the upper limb bud region and lower limb bud region.
- **2.** This mesoderm migrates into the limb bud and forms a **posterior condensation** and an **anterior condensation**.

a. Posterior condensation

i. The posterior condensation develops into the **extensor and supinator muscula**ture of the upper limb and the **extensor and abductor musculature of the lower** limb.

b. Anterior condensation

i. The anterior condensation develops into the flexor and pronator musculature of the upper limb and the flexor and adductor musculature of the lower limb.

II. SMOOTH MUSCLE

Smooth muscle of the gastrointestinal tract and the tunica media of blood vessels is derived from mesoderm.

III. CARDIAC MUSCLE

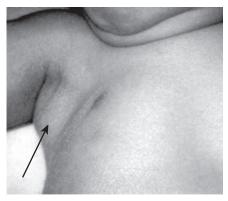
Cardiac muscle is derived from mesoderm that surrounds the primitive heart tube and becomes the myocardium.

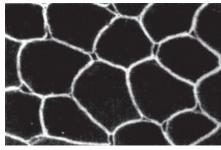
IV. CLINICAL CONSIDERATIONS

A. Prune belly syndrome (Figure 18.2) occurs when the **abdominal musculature** is absent or very hypoplastic, most likely involving cells of the hypomere. The photograph in Figure 18.2 shows an infant with prune belly syndrome. The absence of the abdominal musculature is apparent, causing a widening of the flanks.

FIGURE 18.2. Prune belly syndrome.

B. Poland syndrome (Figure 18.3) is a relatively uncommon chest anomaly characterized by the partial or complete absence of the pectoralis major muscle. In addition, these individuals may demonstrate partial agenesis of the ribs and sternum, mammary gland aplasia, or absence of the latissimus dorsi and serratus anterior muscles. The photograph in Figure 18.3 shows an infant with Poland syndrome. The absence of the right pectoralis major muscle (*arrow*) and loss of the right anterior axillary fold are apparent.




FIGURE 18.3. Poland syndrome.

C. Congenital torticollis (wryneck; Figure 18.4) occurs when the **sternocleidomastoid muscle** is abnormally shortened, causing rotation and tilting of the head. It may be caused by injury to the sternocleidomastoid muscle during childbirth, formation of a hematoma, and eventual fibrosis of the muscle. The photograph in Figure 18.4 shows an infant with congenital torticollis. Note the fibrous mass (arrow) in the right sternocleidomastoid muscle.

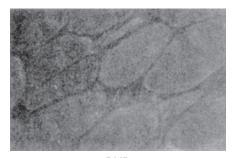


FIGURE 18.4. Congenital torticollis (wryneck).

D. Duchenne muscular dystrophy (DMD; Figure 18.5) is an X-linked recessive genetic disorder caused by a mutation in the **DMD gene** on chromosome Xp21.2, which encodes for dystrophin. Dystrophin anchors the cytoskeleton (actin) of skeletal muscle cells to the extracellular matrix through a transmembrane protein (a-dystroglycan and β-dystroglycan) and stabilizes the cell membrane. A mutation of the DMD gene destroys the ability of dystrophin to anchor actin to the extracellular matrix. Clinical features include progressive muscle weakness and wasting, and death occurs as a result of cardiac or respiratory failure, usually in the late teens or 20s. The immunofluorescent light micrographs in Figure 18.5 show staining for dystrophin located at the periphery of skeletal muscle cells in normal individuals and complete absence of staining in a DMD patient.

Normal

DMD FIGURE 18.5. Duchenne muscular dystrophy (DMD).

Study Questions for Chapter 18

- **1.** The extrinsic eye muscles develop from which of the following?
- (A) Cervical somites
- (B) Epimere
- (C) Hypomere
- (D) Occipital somites
- (E) Preotic somites
- **2**. The tongue muscles develop from which of the following?
- (A) Cervical somites
- (B) Epimere
- (C) Hypomere
- (D) Occipital somites
- (E) Preotic somites

3. The biceps brachii muscle develops from which of the following?

- (A) Hypomere
- (B) Epimere
- (C) Anterior condensation
- (D) Posterior condensation
- (E) Preotic somites

4. The biceps femoris muscle develops from which of the following?

- (A) Hypomere
- (B) Epimere
- **(C)** Anterior condensation
- (\boldsymbol{D}) Posterior condensation
- (E) Preotic somites

Answers and Explanations

- **1. E.** The extrinsic eye muscles arise from the preotic somites (myotomes) found near the prochordal plate. Recent research indicates that the extrinsic eye muscles are derived from somitomeres 1–3, and 5.
- **2. D**. The tongue muscles (intrinsic and extrinsic) arise from the occipital somites (myotomes).
- **3. C.** Because the biceps brachii muscle is a flexor of the antebrachium (forearm), it develops from the anterior condensation of myotomic mesoderm.
- **4. C.** Because the biceps femoris muscle is a flexor of the leg, it develops from the anterior condensation of myotomic mesoderm.

chapter **19** Upper Limb

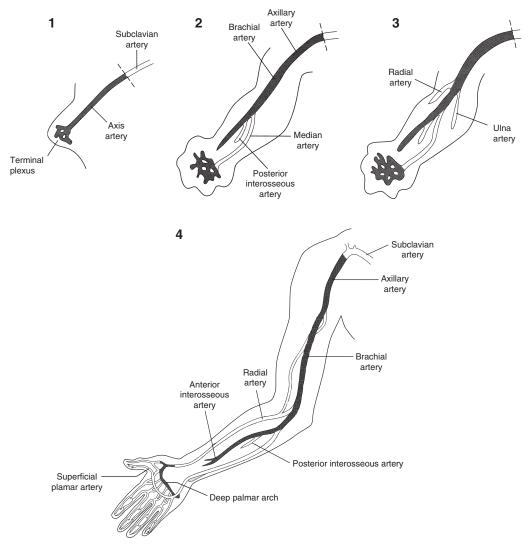
I. OVERVIEW OF DEVELOPMENT

Lateral plate mesoderm migrates into the limb bud and condenses along the central axis to eventually form the **vasculature** and **skeletal** components of the upper limb. **Mesoderm from the somites** migrates into the limb bud and condenses to eventually form the **musculature** component of the upper limb.

A. Apical ectodermal ridge (AER)

- 1. The AER is a ridge of thickened ectoderm at the apex of the limb bud.
- **2.** The AER produces **FGF** (fibroblast growth factor), which interacts with the underlying mesoderm to promote outgrowth of the limb by stimulating mitosis and preventing terminal differentiation of the underlying mesoderm.
- **3.** The AER expresses the **Wnt7** gene, which directs the organization of the limb bud along the dorsal–ventral axis.

B. Zone of polarizing activity (ZPA)


- **1.** The ZPA consists of mesodermal cells located at the base of the limb bud.
- **2.** The ZPA produces **sonic hedgehog** (a diffusible protein encoded by a segment polarity gene), which directs the organization of the limb bud along the anterior–posterior polar axis and patterning of the digits.
- 3. Sonic hedgehog activates the gene for BMP (bone morphogenetic protein) and the Hoxd-9, Hoxd-10, Hoxd-11, Hoxd-12, and Hoxd-13 genes.
- 4. **Retinoic acid** also plays a significant role in limb polarization.

C. Digit formation

- **1.** Digit formation occurs as a result of selected **apoptosis (cell death)** within the AER such that five separate regions of AER remain at the tips of the future digits.
- 2. The exact mechanism is poorly understood, although **BMP**, **Msx-1**, and **retinoic acid receptor** may play a role.

II. VASCULATURE (FIGURE 19.1)

- A. The aortic arch 4 forms the proximal part of the right subclavian artery.
- **B.** The **seventh intersegmental artery** forms the distal part of the right subclavian artery and the entire left subclavian artery.
- **C.** The **subclavian artery (right and left)** continues into the limb bud as the **axis artery**, which ends in a **terminal plexus** near the tip of the limb bud.

FIGURE 19.1. Development of arteries of the upper limb. **(1–3)** Early limb bud. The earliest arterial supply of the upper limb bud is the axis artery (*black*) and terminal plexus (*black*). The first branches of the axis artery are the posterior interosseous artery and the median artery. The last branches of the axis artery are the radial artery and ulnar artery. **(4)** Adult upper limb. The axis artery persists as the axillary artery, brachial artery, anterior interosseous artery, and deep palmar arch (*black*).

- **D.** The **terminal plexus** participates in the formation of the **deep palmar arch** and the **superficial palmar arch**.
- **E.** The **axis artery** initially sprouts the **posterior interosseous artery** and the **median artery** (which is reduced to an unnamed vessel in the adult).
- F. The axis artery later sprouts the radial artery and ulnar artery.
- **G.** The axis artery persists in the adult as the **axillary artery**, **brachial artery**, **anterior interosseous artery**, **and deep palmar arch**.
- **H**. The drawing in Figure 19.1 depicts the development of arteries of the upper limb. The earliest arterial supply of the upper limb bud is the axis artery (black) and terminal plexus

(black). The first branches of the axis artery are the posterior interosseous artery and the median artery. The last branches of the axis artery are the radial artery and ulnar artery. In the adult, the axis artery persists as the axillary artery, brachial artery, anterior interosseous artery, and deep palmar arch (black).

III. MUSCULATURE

The upper limb bud site lies opposite somites C4–C8, T1, and T2. During week 5, mesoderm from these somites (myotomes) migrates into the limb bud and forms a **posterior condensation** and an **anterior condensation**. The mesoderm of these condensations differentiates into myoblasts, and then a splitting of the condensations occurs into anatomically recognizable muscles of the upper limb, although little is known about this process.

A. Posterior condensation

- 1. The **posterior condensation** gives rise to the following muscles: deltoid, supraspinatus, infraspinatus, teres minor, teres major, subscapularis, triceps brachii, anconeus, brachio-radialis, extensor carpi radialis longus, extensor carpii radialis brevis, extensor digitorum, extensor digiti minimi, extensor carpii ulnaris, supinator, abductor pollicis longus, extensor pollicis longus, extensor indicis.
- 2. In general, the posterior condensation gives rise to the **extensor and supinator muscula-***ture*.

B. Anterior condensation

- 1. The **anterior condensation** gives rise to the following muscles: biceps brachii, brachialis, coracobrachialis, pronator teres, flexor carpii radialis, palmaris longus, flexor carpii ulnaris, flexor digitorum superficialis, flexor digitorum profundus, flexor pollicis brevis, flexor pollicis longus, pronator quadratus, abductor pollicis brevis, opponens pollicis, adductor pollicis, abductor digiti minimi, flexor digiti minimi brevis, opponens digiti minimi, lumbricales, and dorsal and palmar interossei.
- 2. In general, the anterior condensation gives rise to the flexor and pronator musculature.

IV. NERVES: THE BRACHIAL PLEXUS (FIGURE 19.2)

- A. Local molecular messages produced at the base of the limb bud guide the early nerve fibers into the limb bud.
- B. The muscles do not provide any specific target messages to the ingrowing nerve fibers.
- **C.** Ventral primary rami from C5–C8, and T1 arrive at the base of the limb bud and join in a specific pattern to form the upper trunk, middle trunk, and lower trunk anterior divisions.
- **D.** Posterior divisions grow into the posterior condensation of mesoderm and join to form the **posterior cord**.
- E. Anterior divisions grow into the anterior condensation of mesoderm and join to form the **medial cord** and **lateral cord**.
- F. With further development of the limb musculature, the posterior cord will branch into the **axillary nerve (C5, C6)** and **radial nerve (C5–C8, T1)** thereby innervating all the muscles that form from the posterior condensation.

- G. With further development of the limb musculature, the medial cord and lateral cord will branch into the musculocutaneous nerve (C5–C7), ulnar nerve (C8, T1), and median nerve (C5–C8, T1) thereby innervating all the muscles that form from the anterior condensation.
- H. The diagram in Figure 19.2 shows the muscle and nerve development of the upper limb. Mesoderm from the somites (myotomes) migrates into the limb bud and forms a posterior and anterior condensation (dotted areas). Ventral primary rami from C5–T1 leave the neural tube and undergo extensive rearrangement into upper, middle, and lower trunks. Each trunk divides into posterior (dotted lines) and anterior (solid lines) divisions. The posterior divisions selectively grow into the posterior condensation and form the posterior cord. The anterior divisions selectively grow into the anterior condensation and form the medial and lateral cords.

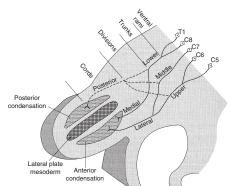


FIGURE 19.2. Muscle and nerve development of the upper limb.

V. ROTATION OF THE UPPER LIMB (FIGURE 19.3)

- **A.** The upper limb buds appear at week 4 as small bulges oriented in a **coronal plane**.
- **B.** The upper limb buds undergo a horizontal movement in week 6 so that they are now oriented in a **sagittal plane**.
- **C**. The upper limbs **rotate laterally 90°** during weeks 6–8 such that the elbow points posteriorly, the extensor compartment lies posterior, and the flexor compartment lies anterior.
- **D.** This rotation causes the originally straight segmental pattern of innervation (dermatomes) to be somewhat modified in the adult.
- **E.** The drawing in Figure 19.3 shows the dermatome pattern in the adult upper limb. The 90° lateral rotation of the upper limb bud causes the originally straight segmental pattern of innervation in the embryo to be somewhat modified ("twisted in a spiral") such that the dermatome pattern in the adult is altered. However, an orderly dermatome pattern can still be recognized in the adult if the upper limb is positioned in the sagittal plane with the thumb pointing superiorly (as shown). The dermatomes from C4 can be counted distally down the superior border of the upper limb (*arrow*) to C7 at the middle finger and then back

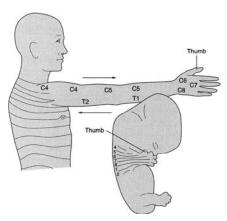


FIGURE 19.3. Dermatome pattern in the adult upper limb.

proximally up the inferior border of the upper limb (*arrow*) to T2. Note the position of the thumb.

VI. SKELETAL

The **lateral plate mesoderm** forms the **scapula**, **clavicle**, **humerus**, **radius**, **ulnar**, **carpals**, **metacarpals**, and **phalanges**. All the bones of the upper limb undergo endochondral ossification. However, the clavicle undergoes both membranous and endochondral ossification. The **timing of bone formation** follows this time course:

A. Weeks 5, 6, and 7–9 (Figure 19.4)

- **1.** At week 5, the lateral plate mesoderm within the limb bud condenses.
- **2.** At week 6, the condensed mesoderm chondrifies to form a hyaline cartilage model of the upper limb bones.
- **3.** At weeks 7–9, the primary ossification centers are seen in the clavicle, humerus, radius, and ulnar bones. The clavicle is the first bone in the entire body to ossify.
- **4.** The drawing in Figure 19.4 shows early bone formation in the upper limb. At week 5, lateral plate mesoderm condenses (hatched). At week 6, the hyaline cartilage (light shading) model of future bones forms. At weeks 7–9, primary ossification centers within the diaphysis appear such that bone (black shading) forms (osteogenesis).

B. Week 9 to birth (Figure 19.5)

- **1.** Primary ossification centers are seen in the scapula, metacarpals, and phalanges.
- **2.** The diagram and radiograph in Figure 19.5 show bone formation in the upper limb at birth. The diaphysis consists of bone (black shading), whereas the epiphysis remains hyaline cartilage (light shading). This is important to note when interpreting radiographs of newborns. The radiograph of a newborn at the shoulder region (1 = humerus, 2 = acromion, 3 = clavicle) shows the portion of the hyaline cartilage model that has been replaced by radiodense bone (white). Note that the epiphyseal end of the humerus (*white arrow*) is still hyaline cartilage at birth and therefore will appear radiolucent (dark).

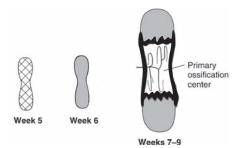


FIGURE 19.4. Early bone formation in the upper limb.

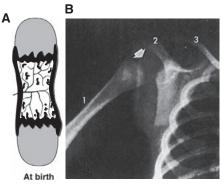
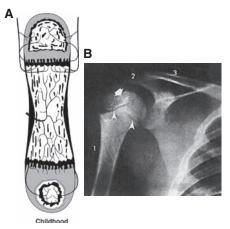



FIGURE 19.5. Bone formation in the upper limb at birth.

C. Childhood (Figure 19.6)

- **1.** Secondary ossification centers form in the epiphyseal ends. All carpal bones begin ossification.
- **2**. The diagram and radiograph in Figure 19.6 show bone formation in the upper limb during childhood. During childhood, secondary ossification centers form in the epiphyseal ends of the bones. During childhood and adolescence, the growth in length of long bones occurs at the epiphyseal growth plate. Note the radiograph of a 6-year-old child at the shoulder region (1 = humerus, 2 = acromion, 3 = clavicle). Because secondary ossification centers are present within the epiphyseal ends of the humerus, the head of the humerus is now radiodense (*white arrow*), and the epiphyseal growth plate (arrowheads) where hyaline cartilage is present remains radiolucent (dark). This is not to be confused with a bone fracture.

FIGURE 19.6. Bone formation in the upper limb during childhood.

Study Questions for Chapter 19

1. Which of the following arteries is one of the first branches to form from the axis artery?

- (A) Radial artery
- (B) Ulnar artery
- (C) Axillary artery
- **(D)** Median artery
- (E) Brachial artery

2. The humerus develops from which of the following?

- (A) Somite mesoderm
- (B) Lateral plate mesoderm
- (C) Intermediate mesoderm
- **(D)** Extraembryonic mesoderm
- (E) Sclerotome mesoderm

3. The long head of the triceps muscle develops from which of the following?

- (A) Posterior condensation
- (B) Anterior condensation
- (C) Lateral plate mesoderm
- (D) Extraembryonic mesoderm
- (E) Sclerotome mesoderm

4. Which of the following muscles will the lateral cord of the brachial plexus innervate?

- (A) Triceps
- (B) Supinator
- (C) Extensor carpi ulnaris
- (D) Extensor digitorum
- (E) Biceps brachii

5. During weeks 6–8, the upper limb will rotate

- (A) Medially 90°
- (B) Laterally 90°
- (C) Medially 180°
- (D) Laterally 180°
- (E) No rotation occurs

Answers and Explanations

- **1. D.** The median artery is one of the first branches to form from the axis artery. In the adult, the median artery does not persist and is probably reduced to a small unnamed vessel. This is why the median nerve does not have an accompanying artery in the adult like the ulnar nerve (ulnar artery) and radial nerve (radial artery).
- **2. B.** All bones of the upper limb form from lateral plate mesoderm that condenses alone the central axis of the upper limb bud.
- **3. A.** Somite mesoderm migrates into the limb bud and forms two condensations. The posterior condensation of the upper limb gives rise to the extensors of the upper limb, which attain a posterior location in the adult because of the lateral rotation of 90°.
- **4. E.** One of the nerves that form from the lateral cord of the brachial plexus is the musculocutaneous nerve. The musculocutaneous nerve will innervate muscles derived from the anterior condensation (flexors). The biceps brachii muscle is a flexor at the elbow joint. Note that the biceps brachii muscle and the musculocutaneous nerve are related embryologically to the anterior condensation and anterior divisions (which form the lateral cord) and in the adult are located anterior. This occurs because of the lateral rotation of 90°.
- 5. B. The upper limb rotates laterally 90° so that the elbows point posteriorly.

chapter **20** Lower Limb

I. OVERVIEW OF DEVELOPMENT

Lateral plate mesoderm migrates into the limb bud and condenses along the central axis to eventually form the **vasculature** and **skeletal** components of the upper limb. **Mesoderm from the somites** migrates into the limb bud and condenses to eventually form the **musculature** component of the upper limb.

A. Apical ectodermal ridge (AER)

- 1. The AER is a ridge of thickened ectoderm at the apex of the limb bud.
- **2.** The AER produces **FGF** (fibroblast growth factor), which interacts with the underlying mesoderm to promote outgrowth of the limb by stimulating mitosis and preventing terminal differentiation of the underlying mesoderm.
- **3.** The AER expresses the **Wnt7** gene, which directs the organization of the limb bud along the dorsal–ventral axis.

B. Zone of polarizing activity (ZPA)

- 1. The ZPA consists of mesodermal cells located at the base of the limb bud.
- **2.** The ZPA produces **sonic hedgehog** (a diffusible protein encoded by a segment polarity gene), which directs the organization of the limb bud along the anterior–posterior polar axis and patterning of the digits.
- 3. Sonic hedgehog activates the gene for BMP (bone morphogenetic protein) and the Hoxd-9, Hoxd-10, Hoxd-11, Hoxd-12, and Hoxd-13 genes.
- 4. Retinoic acid also plays a significant role in limb polarization.
- C. Digit formation
 - **1.** Digit formation occurs as a result of selected **apoptosis (cell death)** within the AER such that five separate regions of AER remain at the tips of the future digits.
 - 2. The exact mechanism is poorly understood, although **BMP**, **Msx-1**, and **retinoic acid receptor** may play a role.

II. VASCULATURE (FIGURE 20.1)

- **A.** The **umbilical artery** gives rise to the **axis artery** of the lower limb, which ends in a **terminal plexus** near the tip of the limb bud.
- B. The terminal plexus participates in the formation of the deep plantar arch.
- **C.** The **axis artery** sprouts the **anterior tibial artery** (which continues as the **dorsalis pedis artery**) and the **posterior tibial artery** (which terminates as the **medial plantar artery** and **lateral plantar artery**).

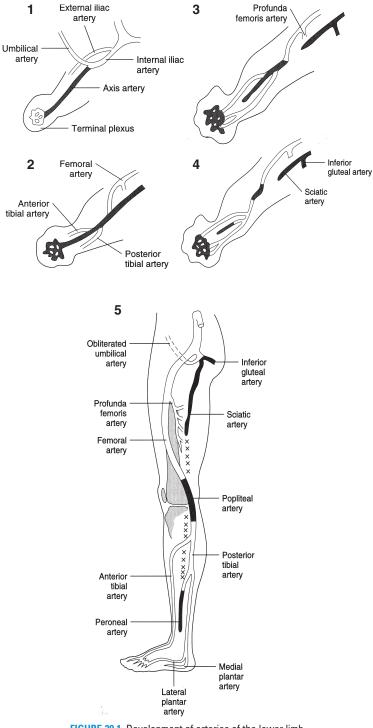


FIGURE 20.1. Development of arteries of the lower limb.

238 BRS Embryology

- **D**. While most of the axis artery regresses, the axis artery ultimately persists in the adult as the **inferior gluteal artery, sciatic artery** (accompanying the sciatic nerve), proximal part of the **popliteal artery**, and distal part of the **peroneal artery**.
- **E.** The **external iliac artery** gives rise to the **femoral artery** of the lower limb, which constitutes a separate second arterial channel into the lower limb that connects to the axis artery.
- F. The femoral artery sprouts the profunda femoris artery.
- **G.** The drawing in Figure 20.1 depicts the development of arteries of the lower limb. The earliest arterial supply of the lower limb bud is the axis artery (black) and terminal plexus (black), which arises from the umbilical artery. The axis artery gives off branches forming the anterior tibial artery and posterior tibial artery and undergoes regression and some remodeling in selected areas. The external iliac artery gives rise to the femoral artery, which constitutes a separate second arterial channel in the lower limb. In the adult, the axis artery persists as the inferior gluteal artery, sciatic artery, proximal part of the popliteal artery, and distal part of the peroneal artery. The X's indicate areas of regression.

III. MUSCULATURE

The lower limb bud site lies opposite somites L1–L5, S1, and S2. During week 5, mesoderm from these somites (myotomes) migrates into the limb bud and forms a **posterior condensation** and an **anterior condensation**. The mesoderm of these condensations differentiates into myoblasts, and then a splitting of the condensations occurs into anatomically recognizable muscles of the lower limb, although little is known about this process.

A. Posterior condensation

- 1. The posterior condensation gives rise to the following muscles: gluteus maximus, gluteus medius, gluteus minimus, piriformis, pectineus, iliacus, tensor fascia latae, sartorius, rectus femoris, vastus lateralis, vastus medialis, vastus intermedius, short head of biceps femoris, tibialis anterior, extensor hallucis longus, extensor digitorum longus, peroneus tertius, peroneus longus, peroneus brevis, extensor digitorum brevis, and extensor hallucis brevis.
- 2. In general, the posterior condensation gives rise to the **extensor and abductor musculature**.

B. Anterior condensation

- 1. The **anterior condensation** gives rise to following muscles: adductor longus, adductor brevis, adductor magnus, gracilis, obturator externus, obturator internus, superior and inferior gemelli, quadratus femoris, semitendinosus, semimembranosus, long head of biceps femoris, gastrocnemius, soleus, plantaris, popliteus, flexor hallucis longus, flexor digitorum longus, tibialis posterior, abductor hallucis, flexor digitorum brevis, abductor digiti minimi, quadratus plantae, lumbricales, flexor hallucis brevis, adductor hallucis, flexor digiti minimi brevis, and dorsal and plantar interossei.
- 2. In general, the anterior condensation gives rise to the flexor and adductor musculature.

IV. NERVES: THE LUMBOSACRAL PLEXUS (FIGURE 20.2)

- **A.** Local cell biological messages produced at the base of the limb bud guide the early nerve fibers into the limb bud.
- B. The muscles do not provide any specific target messages to the ingrowing nerve fibers.

- **C.** Ventral primary rami from L2–L5 and S1–S3 arrive at the base of the limb bud and divide into posterior divisions and anterior divisions.
- **D**. Posterior divisions grow into the posterior condensation of mesoderm.
- E. Anterior divisions grow into the anterior condensation of mesoderm.
- F. With further development of the limb musculature, the posterior divisions will branch into the superior gluteal nerve (L4, L5, S1), inferior gluteal nerve (L5, S1, S2), femoral nerve (L2–L4), and common peroneal nerve (L4, L5, S1, S2), thereby innervating all the muscles that form from the posterior condensation.
- **G**. With further development of the limb musculature, the anterior divisions will branch into the **tibial nerve (L4, L5, S1–S3)** and **obturator nerve (L2–L4)**, thereby innervating all the muscles that form from the anterior condensation.
- H. The diagram in Figure 20.2 shows the muscle and nerve development of the lower limb. Mesoderm from somites (myotomes) migrates into the limb bud and forms a posterior and anterior condensation (dotted areas). Ventral primary rami from L2–S3 leave the neural tube and divide into posterior (dotted lines) and anterior (solid lines) divisions. The posterior divisions selectively grow into the posterior condensation. The anterior divisions selectively grow into the anterior condensation.

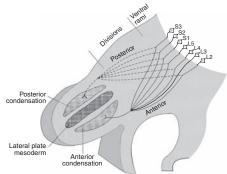


FIGURE 20.2. Muscle and nerve development of the lower limb.

V. ROTATION OF THE LOWER LIMB (FIGURE 20.3)

- **A.** The lower limb buds appear in week 4 (about 4 days after the upper limb bud) as small bulges oriented in a **coronal plane**.
- **B.** The lower limb buds undergo a horizontal movement in week 6, so that they are now oriented in a **sagittal plane**.
- **C.** The lower limbs **rotate medially 90°** during weeks 6–8 such that the knee points anteriorly, the extensor compartment lies anterior, and the flexor compartment lies posterior.
- **D**. This rotation causes the originally straight segmental pattern of innervation (dermatomes) to be somewhat modified in the adult.
- **E**. Note that the upper limbs rotate laterally 90°, whereas the lower limbs rotate medially 90°, which sets up the following anatomical situations:
 - **1.** The flexor compartment of the upper limb is anterior, whereas the flexor compartment of the lower limb is posterior.
 - **2.** The extensor compartment of the upper limb is posterior, whereas the extensor compartment of the lower limb is anterior.
 - 3. Flexion at the wrist joint is analogous to plantar flexion at the ankle joint.
 - 4. Extension at the wrist joint is analogous to dorsiflexion at the ankle joint.

240 BRS Embryology

F. The drawing in Figure 20.3 shows the dermatome pattern in the adult lower limb. The 90° medial rotation of the lower limb bud causes the originally straight segmental pattern of innervation in the embryo to be somewhat modified ("twisted in a spiral") such that the dermatome pattern in the adult is altered. However, an orderly dermatome pattern can still be recognized in the adult if the lower limb is positioned in a parasagittal plane with the big toe pointing superiorly (as shown). The dermatomes from L1 can be counted distally down the superior border of the lower limb (*arrow*) to L5 and then back proximally up the inferior border of the big toe.

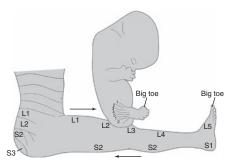


FIGURE 20.3. Dermatome pattern in the adult lower limb.

VI. SKELETAL

The lateral plate mesoderm forms the ilium, ischium, pubis, femur, tibia, fibula, tarsals, metatarsals, and phalanges. All bones of the lower limb undergo endochondral ossification. The timing of bone formation follows this time course:

A. Weeks 5, 6, and 7–9 (Figure 20.4)

- **1.** At week 5, lateral plate mesoderm within the limb bud condenses.
- **2.** At week 6, condensed mesoderm chondrifies to form a hyaline cartilage model of all the lower limb bones.
- **3.** At weeks 7–9, primary ossification centers are seen in the femur and tibia.
- **4.** The drawing in Figure 20.4 shows early bone formation in the lower limb. At week 5, lateral plate mesoderm condenses (hatched). At week 6, the hyaline cartilage (light shading) model of future bones forms. At weeks 7–9, primary ossification centers within the diaphysis appear such that bone (dark shading) forms (osteogenesis).

B. Week 9 to birth (Figure 20.5)

- 1. Primary ossification centers are seen in the ilium, ischium, pubis, fibula, calcaneus, talus, metatarsals, and phalanges.
- **2.** The ossification of the calcaneus (weeks 16–20) is used medicolegally to establish maturity.
- **3.** The diagram and radiograph in Figure 20.5 show bone formation in the lower limb at birth. The diaphysis consists of bone (black shading), whereas the epiphysis remains hyaline cartilage. This is important to note when interpreting radiographs of newborns. The radiograph of a newborn at the hip region

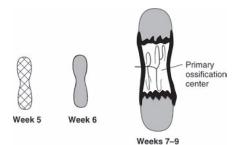
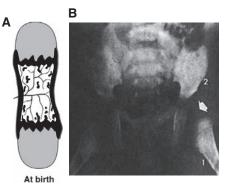



FIGURE 20.4. Early bone formation in the lower limb.

(1 = femur, 2 = ilium) shows the portions of the hyaline cartilage model that have been replaced by radiodense bone (white). Note the epiphyseal end of the femur (*white arrow*) is still hyaline cartilage at birth and therefore will appear radiolucent (dark).

C. Childhood (Figure 20.6)

- **1.** Secondary ossification centers form in the epiphyseal ends. The remaining tarsal bones begin ossification.
- 2. The diagram and radiograph in Figure 20.6 show bone formation in the lower limb during childhood. During childhood, secondary ossification centers form in the epiphyseal ends of the bones. During childhood and adolescence, the growth in length of long bones occurs at the epiphyseal growth plate. Note the radiograph of a 6-year-old child at the hip region (1 = femur, 2 = ilium). Because secondary ossification centers are present within the epiphyseal ends, the head of the femur is now radiodense (white arrow), and the epiphyseal growth plate (arrowhead) where hyaline cartilage is present remains radiolucent (dark). This is not to be confused with a bone fracture.

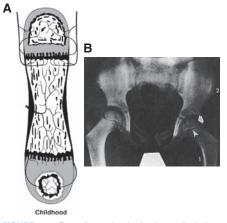


FIGURE 20.6. Bone formation in the lower limb during childhood.

Study Questions for Chapter 20

1. Which of the following arteries gives rise to the axis artery of the lower limb?

- (A) External iliac artery
- (B) Femoral artery
- (C) Profunda femoris artery
- (D) Umbilical artery
- **(E)** Inferior gluteal artery

2. The femur develops from which of the following?

- (A) Somite mesoderm
- (B) Lateral plate mesoderm
- (C) Intermediate mesoderm
- (D) Extraembryonic mesoderm
- **(E)** Sclerotome mesoderm

3. The rectus femoris muscle develops from which of the following?

- (A) Posterior condensation
- (B) Anterior condensation
- (C) Lateral plate mesoderm
- (D) Extraembryonic mesoderm
- (E) Sclerotome mesoderm

4. Which of the following muscles will the posterior divisions of the lumbosacral plexus innervate?

- (A) Semitendinosus
- (B) Semimembranosus
- (C) Long head of biceps femoris
- **(D)** Rectus femoris
- (E) Gastrocnemius

5. During weeks 6–8, the lower limb bud will rotate

- (A) Medially 90°
- (B) Laterally 90°
- (C) Medially 180°
- (D) Laterally 180°
- (E) No rotation occurs

Answers and Explanations

- 1. D. Early in development, the umbilical artery gives rise to the axis artery.
- **2. B.** All bones of the lower limb form from lateral plate mesoderm that condenses along the central axis of the lower limb bud.
- **3. A.** Somite mesoderm migrates into the limb bud and forms two condensations. The posterior condensation of the lower limb gives rise to the extensors of the lower limb, which attain an anterior location in the adult because of the medial rotation of 90°.
- **4. D**. One of the nerves that form from the posterior divisions of the lumbosacral plexus is the femoral nerve. Posterior divisions of the lumbosacral plexus will innervate muscles derived from the posterior condensation (extensors). Rectus femoris muscle is an extensor at the knee joint. Note that rectus femoris muscle and the femoral nerve are related embryologically to the posterior condensation and posterior divisions even though in the adult they are located anterior. This occurs because of the medial rotation of 90°.
- 5. A. The lower limb bud will rotate medially 90° so that the knee points anteriorly.

chapter **21** Body Cavities

I. FORMATION OF THE INTRAEMBRYONIC COELOM (FIGURE 21.1)

- **A**. The formation of the intraembryonic coelom begins when spaces coalesce within the lateral mesoderm and form a horseshoe-shaped space that opens into the chorionic cavity (extraembryonic coelom) on the right and left sides.
- **B.** The intraembryonic coelom is remodeled due to the craniocaudal folding and lateral folding of the embryo.
- **C.** The intraembryonic coelom can best be visualized as a balloon whose walls are visceral mesoderm (closest to the viscera) and somatic mesoderm (closest to the body wall).
- **D**. The intraembryonic coelom provides the needed room for the growth of various organs.

II. PARTITIONING OF THE INTRAEMBRYONIC COELOM

The intraembryonic coelom is initially one continuous space. To form the definitive adult pericardial, pleural, and peritoneal cavities, two partitions must develop. The two partitions are the **paired pleuropericardial membranes** and the **diaphragm**.

A. Paired pleuropericardial membranes

- **1.** The **paired pleuropericardial membranes** are sheets of somatic mesoderm that separate the **pericardial cavity** from the **pleural cavities**.
- **2.** The formation of these membranes appears to be aided by lung buds invading the lateral body wall and by tension on the common cardinal veins resulting from rapid longitudinal growth.
- **3.** These membranes develop into the definitive **fibrous pericardium** surrounding the heart.

B. Diaphragm

- 1. The diaphragm separates the pleural cavities from the peritoneal cavity.
- **2.** The diaphragm is formed through the fusion of tissue from four different sources:
 - **a**. The **septum transversum** is a thick mass of mesoderm located between the primitive heart tube and the developing liver. The septum transversum is the primordium of the **central tendon of the diaphragm** in the adult.
 - **b.** The **paired pleuroperitoneal membranes** are sheets of somatic mesoderm that appear to develop from the dorsal and dorsolateral body wall by an unknown mechanism.
 - **c.** The **dorsal mesentery of the esophagus** is invaded by myoblasts and forms the **crura of the diaphragm** in the adult.

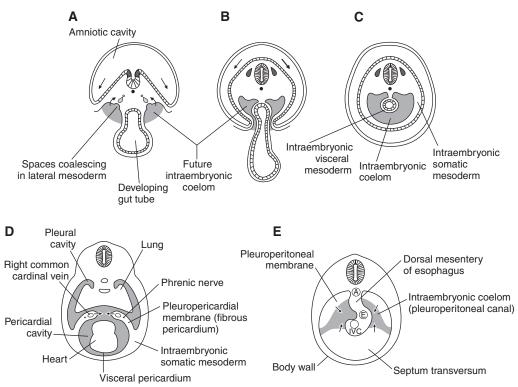


FIGURE 21.1. Formation and partitioning of the intraembryonic coelom (IC). (A, B, C) Cross sections showing various stages of IC formation while the embryo undergoes lateral folding. (D) Cross section showing two folds of intraembryonic somatic mesoderm carrying the phrenic nerves and common cardinal veins. The two folds fuse in the midline (*arrows*) to form the pleuropericardial membrane. This separates the pericardial cavity (*shaded*) from the pleural cavity (*shaded*). (E) Cross section of an embryo at week 5 showing the four components that fuse (*arrows*) to form the diaphragm, which closes off the IC between the pleural and periconeal cavities. The portions of the IC that connect the pleural and pericardial cavities in the embryo are called the pleuropericardial cavities. A = aorta; E = esophagus; IVC = inferior vena cava.

d. The **body wall** contributes muscle to the peripheral portions of the definitive diaphragm.

III. POSITIONAL CHANGES OF THE DIAPHRAGM

- **A.** During week 4 of development, the developing diaphragm becomes innervated by the **phrenic nerves**, which originate from C3, C4, and C5 and pass through the pleuropericardial membranes (this explains the definitive location of the phrenic nerves associated with the fibrous pericardium).
- **B.** By week 8, there is an apparent **descent of the diaphragm to L1** because of the rapid growth of the neural tube.
- **C.** The phrenic nerves are carried along with the "descending diaphragm," which explains their unusually long length in the adult.

IV. CLINICAL CONSIDERATIONS

A. Congenital diaphragmatic hernia (Figure 21.2) is a herniation of abdominal contents into the pleural cavity caused by a failure of the pleuroperitoneal membrane to develop or fuse with the

other components of the diaphragm. A congenital diaphragmatic hernia is most commonly found on the left posterolateral side and is usually life threatening because abdominal contents compress the lung buds, causing pulmonary hypoplasia. Clinical signs in the newborn include an unusually flat abdomen, breathlessness, severe dyspnea, peristaltic bowels sounds over the left chest, and cyanosis. It can be detected prenatally using ultrasonography. The photograph in Figure 21.2 shows an infant at autopsy with a congenital diaphragmatic hernia. Note the defect (arrow) in the diaphragm, which allows loops of intestine and a portion of the liver to enter the pleural cavity. There is attendant pulmonary hypoplasia. The radiograph shows a congenital diaphragmatic hernia. Note the loops of intestine within the pleural cavity as indicated by the bowel gas above and below the diaphragm and the mediastinal shift to the right.

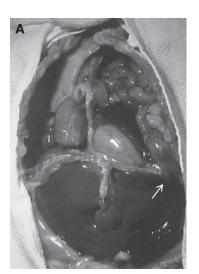


FIGURE 21.2. Congenital diaphragmatic hernia.

FIGURE 21.3. Esophageal hiatal hernia.

B. Esophageal hiatal hernia (Figure 21.3) is a herniation of the stomach through the esophageal hiatus into the pleural cavity caused by an abnormally large esophageal hiatus. An esophageal hiatal hernia renders the **esophagogastric sphincter** incompetent so that stomach contents reflux into the esophagus. Clinical signs in the newborn include vomiting (frequently projectile) when the infant is laid on its back after feeding. The photograph in Figure 21.3 shows an esophageal hiatal hernia. Note the large saccular, discolored, ischemic portion of the stomach (*arrow*) and the deviation of the esophagus to the right.

Study Questions for Chapter 21

1. A congenital diaphragmatic hernia may result from failure of the

- (A) septum transversum to develop
- (B) pleuroperitoneal membranes to fuse in a normal fashion
- (C) pleuropericardial membrane to develop completely
- **(D)** dorsal mesentery of the esophagus to develop
- (E) body wall to form the peripheral part of the diaphragm

2. A congenital diaphragmatic hernia most commonly occurs

- (A) on the right anteromedial side
- (B) on the right posterolateral side
- (C) on the left anteromedial side
- **(D)** on the left posterolateral side
- (E) anywhere on the left side

3. A congenital diaphragmatic hernia is usually life threatening because it is associated with

- (A) pulmonary hypoplasia
- (B) pulmonary hyperplasia
- (C) physiological umbilical hernia
- (D) liver hypoplasia
- (E) liver agenesis

4. An 8-day-old boy presents with a history of complete loss of breath at times and of turning blue on a number of occasions. If the baby is placed in an upright or sitting position, his breathing improves. Physical examination reveals an unusually flat stomach when the newborn is lying down; auscultation demonstrates no breath sounds on the left side of the thorax. What is the diagnosis?

- (A) Physiological umbilical herniation
- (B) Esophageal hiatal hernia
- (C) Tetralogy of Fallot
- (D) Congenital diaphragmatic hernia
- (E) Tricuspid atresia

5. During week 4, the developing diaphragm is located at

- (A) C3, C4, C5
- **(B)** T3, T4, T5
- (C) T8, T9, T10
- **(D)** L1, L2, L3
- (E) L4, L5, L6

6. An apparently healthy newborn with a hardy appetite has begun feedings with formula. When she is laid down in the crib after feeding, she experiences projectile vomiting. Which of the following conditions is a probable cause of this vomiting?

- (A) Physiological umbilical herniation
- (B) Esophageal hiatal hernia
- (C) Tetralogy of Fallot
- (D) Congenital diaphragmatic hernia
- (E) Tracheoesophageal fistula

Answers and Explanations

- **1. B.** The formation of the diaphragm occurs through the fusion of tissue from four different sources. The pleuroperitoneal membranes normally fuse with the three other components during week 6 of development. Abnormal development or fusion of one or both of the pleuroperitoneal membranes causes a patent opening between the thorax and abdomen through which abdominal viscera may herniate.
- **2. D.** Congenital diaphragmatic hernias occur most commonly on the left posterolateral side. The pleuroperitoneal membrane on the right side closes before the left for reasons that are not clear. Consequently, the patency on the left side remains unclosed for a longer time. The portion of the diaphragm formed by the pleuroperitoneal membrane in the newborn is located posterolateral.
- **3. A.** The herniation of abdominal contents into the pleural cavity compresses the developing lung bud, resulting in pulmonary hypoplasia. Lung development on the ipsilateral (left) side of the herniation is most commonly affected, but lung development on the contralateral (right) side can also be compromised. The lungs may achieve normal size and function after surgical reduction of the hernia and repair of the diaphragm. However, mortality is high due to pulmonary hypoplasia.
- **4. D**. Loss of breath and cyanosis result from pulmonary hypoplasia associated with congenital diaphragmatic hernia. Placing the baby in an upright position will reduce the hernia somewhat and ease the pressure on the lungs, thereby increasing the baby's comfort. The baby's stomach is flat (instead of the plump belly of a normal newborn) because the abdominal viscera have herniated into the thorax. Auscultation reveals no breath sounds on the left side because of pulmonary hypoplasia.
- **5. A.** Although it may seem unusual, the adult diaphragm has its embryological beginning at the cervical level (C3, C4, C5). Nerve roots from C3, C4, and C5 enter the developing diaphragm, bringing both motor and sensory innervation. With the subsequent rapid growth of the neural tube, there is an apparent descent of the diaphragm to its adult levels (thoracic and lumbar). However, the diaphragm retains its innervation from C3, C4, and C5, which explains the unusually long phrenic nerves.
- **6. B.** An esophageal hiatal hernia is a herniation of the stomach through the esophageal hiatus into the pleural cavity. This compromises the esophagogastric sphincter so that stomach contents can easily reflux into the esophagus. The combination of a full stomach after feeding and lying down in the crib will cause vomiting in this newborn.

chapter **22** Pregnancy

I. ENDOCRINOLOGY OF PREGNANCY

A. Human chorionic gonadotropin (hCG)

- 1. hCG is a glycoprotein hormone produced by the **syncytiotrophoblast** that stimulates the production of progesterone by the corpus luteum (i.e., maintains corpus luteum function).
- 2. hCG can be assayed in maternal blood at day 8 or maternal urine at day 10 using a radioimmunoassay with antibodies directed against the β subunit of hCG. This is the basis of the early-pregnancy test kits purchased over the counter.
- **3.** Low hCG levels may predict a spontaneous abortion or indicate an ectopic pregnancy.
- 4. High hCG levels may indicate a multiple pregnancy, hydatidiform mole, or gestational trophoblastic neoplasia.
- 5. Quantitative hCG dating of pregnancy. During weeks 1–6 of a normal pregnancy, hCG levels will increase by about 70% every 48 hours.
 - **a.** 0–2 weeks: 0–250 mIU/mL
 - **b.** 2–4 weeks: 100–5000 mIU/mL
 - **c.** 1–2 months: 4000–200,000 mIU/mL
 - **d.** 2–3 months: 8000–100.000 mIU/mL
 - **e**. 2nd trimester: 4000–75,000 mIU/mL
 - **f.** 3rd trimester: 1000–5000 mIU/mL

B. Human placental lactogen (hPL)

- 1. hPL is a protein hormone produced by the **placenta** that induces lipolysis, thereby elevating free fatty acid levels in the mother.
- 2. hPL is considered the "growth hormone" of the latter half of pregnancy.
- 3. hPL can be assayed in maternal blood at week 6.
- 4. hPL levels vary with placental mass (i.e., may indicate a multiple pregnancy) and rapidly disappear from maternal blood after delivery.

C. Prolactin (PRL)

- 1. PRL is a protein hormone produced by the maternal adenohypophysis, fetal adenohypophysis, and decidual tissue of the uterus that prepares the mammary glands for lactation.
- 2. PRL can be assayed in maternal blood throughout pregnancy or later in amniotic fluid.
- 3. Near term, PRL levels rise to a maximum of about 100 ng/mL (normal nonpregnant PRL levels range between 8 and 25 ng/mL).

D. Progesterone (PG)

- 1. PG is a steroid hormone produced by the **corpus luteum** until week 8 and then by the **pla**centa until birth.
- 2. PG prepares the endometrium for implantation (nidation) and maintains the endometrium.

- **3.** PG is used by the fetal adrenal cortex as a precursor for corticosteroid and mineralocorticoid synthesis.
- **4.** PG is used by the fetal testes as a precursor for testosterone synthesis.

E. Estrone, estradiol, and estriol

- **1.** Little is known about the specific function of these steroid hormones in the mother or fetus during pregnancy.
- **2**. **Estrone** is a fairly weak estrogen.
- **3**. **Estradiol** is the most potent estrogen.
- 4. Estriol is a very weak estrogen but is produced in very high amounts during pregnancy.
- **5.** Estriol can be assayed in **maternal blood** (shows a distinct diurnal variation with peak amounts early in the morning) and **maternal urine** (24-hour urine sample shows no diurnal variation).
- **6.** Significant amounts of estriol are produced at month 3 (i.e., early second trimester) and continue to rise until birth.
- **7.** Maternal urinary levels of estriol have long been recognized as a **reliable index of fetal–placental function** because estriol production is dependent on a normally function-ing fetal adrenal cortex, fetal liver, and placenta.
- 8. Estrone, estradiol, and estriol are produced by complex series of steps involving the **maternal liver**, **placenta**, **fetal adrenal gland**, and **fetal liver** as follows:
 - **a**. Cholesterol from the maternal liver is converted to pregnenolone by the placenta.
 - **b**. Pregnenolone is converted to pregnenolone sulfate.
 - **c.** Pregnenolone sulfate is converted to dehydroepiandrosterone sulfate (DHEA-SO₄) by the fetal adrenal gland.
 - **d**. DHEA-SO₄ is converted to estrone and estradiol by the placenta.
 - **e**. DHEA-SO₄ is also converted to 16α -hydroxy DHEA-SO₄ by the fetal liver.
 - **f.** 16α -hydroxy DHEA-SO₄ is converted to estriol by the placenta.

II. PREGNANCY DATING

- **A.** The **estimated date of confinement (EDC)** is based on the assumption that a woman has a 28-day cycle with ovulation on day 14 or day 15.
- **B.** In general, the duration of a normal pregnancy is **280 days (40 weeks) from the first day of the last menstrual period (LMP).**
- **C.** A common method for determining the EDC (Naegele's rule) is to count back 3 months from the first day of the LMP and then add 1 year and 7 days. This method is reasonably accurate in women with regular menstrual cycles.

III. PREGNANCY MILESTONES

A. First trimester

- **1.** The first trimester extends from the last menstrual period through week 12. Important events that occur are:
 - **a.** At days 8–10, a positive pregnancy test is obtained by hCG assay.
 - **b.** At week 12, the uterine fundus is palpable at the pubic symphysis; Doppler fetal heart rate is first audible.
- **B. Second trimester**
 - 1. The second trimester extends from the end of the first trimester through week 27. Important events that occur are:
 - **a**. At weeks 14–18, amniocentesis is performed when suspicion of fetal chromosomal abnormalities exist.

- **b.** At week 16, the uterine fundus is palpable midway between the pubic symphysis and the umbilicus.
- **c.** At weeks 16–18, first fetal movements occur (**quickening**) in a woman's second or higher pregnancy.
- **d.** At weeks 17–20, the fetal heart rate is audible with fetoscope.
- **e.** At week 18, female and male external genitalia can be distinguished by ultrasound (i.e., sex determination).
- f. At weeks 18–20, first fetal movements occur (quickening) in a woman's first pregnancy.
- **g.** At week 20, the uterine fundus is palpable at the umbilicus.
- **h.** At weeks 25–27, lungs become capable of respiration; surfactant is produced by type II pneumocytes. There is a 70%–80% chance of survival in infants born at the end of the second trimester. If death occurs, it is generally as a result of lung immaturity and resulting respiratory distress syndrome (hyaline membrane disease).
- i. At week 27, the fetus weighs about 1000 grams (a little more than 2 pounds).

C. Third trimester

- **1.** The third trimester extends from the end of the second trimester until term or week 40. Important events that occur are:
 - a. Pupillary light reflex is present.
 - **b.** Descent of the fetal head to the pelvic inlet (called **lightening**) occurs.
 - **c.** Rupture of the amniochorionic membrane occurs, with labor usually beginning about 24 hours later.
 - d. The fetus weighs about 3300 grams (about 7–7.5 pounds).

IV. PRENATAL DIAGNOSTIC PROCEDURES

Prenatal diagnosis is indicated in about **8%** of all pregnancies. Prenatal diagnostic procedures include the following:

A. Ultrasonography

- 1. Ultrasonography is commonly used to:
 - a. Date a pregnancy
 - **b**. Diagnose a multiple pregnancy
 - c. Assess fetal growth
 - $\textbf{d.} \ Determine \ placenta \ location$
 - **e**. Determine position and lie of the fetus
 - f. Detect certain congenital anomalies
 - **g.** Monitor needle or catheter insertion during amniocentesis and chorionic villus biopsy
- **2.** In obstetric ultrasonography, 2.25- to 5.0-mHz frequencies are used for good tissue differentiation.
- **3.** The term **anechoic** refers to tissues with few or no echoes (e.g., bladder, brain, cavities, amniotic fluid).
- 4. The term **echogenic** refers to tissues with a high capacity to reflect ultrasound.

B. Amniocentesis

- 1. Amniocentesis is a transabdominal sampling of amniotic fluid and fetal cells.
- **2**. Amniocentesis is performed at weeks 16–20 and is indicated in the following situations:
 - a. The woman is older than 35 years of age.
 - **b**. A previous child had a chromosomal anomaly.
 - **c**. One parent is a known carrier of a translocation or inversion.
 - **d**. One or both parents are known carriers of an X-linked recessive or autosomal recessive trait.
 - **e**. There is a history of neural tube defects.

252 BRS Embryology

- **3**. The sample obtained is used in the following studies:
 - **a**. **α**-**Fetoprotein assay** is used to diagnose neural tube defects.
 - **b. Spectrophotometric assay of bilirubin** is used to diagnose hemolytic disease of the newborn (i.e., erythroblastosis fetalis) due to Rh incompatibility.
 - c. Lecithin-sphingomyelin (L/S) ratio and phosphatidylglycerol assay are used to determine the lung maturity of the fetus.
 - **d. DNA analysis:** A wide variety of DNA methodologies are available [e.g., karyotype analysis, Southern blotting, or RFLP analysis (restriction fragment length polymorphism)] to diagnose chromosomal abnormalities and single-gene defects.

C. Chorionic villus biopsy

- **1.** Chorionic villus biopsy is a transabdominal or transcervical sampling of the chorionic villi to obtain a large amount of **fetal cells** for DNA analysis.
- **2.** Chorionic villus biopsy is performed late in the first trimester at weeks 10–12 (i.e., much earlier than amniocentesis), thereby providing an early source of fetal cells for DNA analysis.
- D. Percutaneous umbilical blood sampling (PUBS)
 - **1.** PUBS is a sampling of **fetal blood** from the umbilical cord.

V. FETAL DISTRESS DURING LABOR (INTRAPARTUM)

- **A.** Fetal distress during labor is defined in terms of **fetal hypoxia** and measured by changes in either **fetal heart rate (FHR)** or **fetal scalp capillary pH**.
- **B**. The normal baseline FHR is **120–160 beats/min**.
- **C.** Fetal hypoxia causes a decrease in FHR (or **fetal bradycardia**), that is, a **FHR of less than 120 beats/min**.
- D. The normal fetal scalp capillary pH is pH 7.25–7.35.
- E. Fetal hypoxia causes a decrease in pH, that is, a pH of less than 7.20.

VI. THE APGAR SCORE (TABLE 22.1)

- **A**. The **APGAR score** assesses five characteristics (**A**ppearance, **P**ulse, **G**rimace, **A**ctivity, **R**espiratory effort) in the newborn infant in order to determine which infants need resuscitation.
- **B.** The APGAR score is calculated at 1 minute and 5 minutes after birth. To obtain an APGAR score, score 0, 1, or 2 for the five characteristics and add them together.
 - 1. **APGAR score of 0–3** indicates a life-threatening situation.
 - 2. APGAR score of 4–6 indicates temperature and ventilation support is needed.
 - **3. APGAR score of 7–10** indicates a normal situation.

table 22.1	Assessing the A	sessing the APGAR Score		
	Score			
Characteristic	0	1	2	Example ^a
Appearance, color	Blue, pale	Body pink, extremities blue	Completely pink	1
Pulse, heart rate	Absent	<100 beats/minute	>100 beats/minute	2
Grimace, reflex, irritability	No response	Grimace	Vigorous crying	0
Activity, muscle tone	Flaccid	Some flexion of extremities	Active motion, flexed extremities	0
Respiratory effort	None	Weak, irregular	Good, crying	1
APGAR score				4

^aClinical example: A newborn infant at 5 minutes after birth has a pink body but blue extremities (score 1); a heart rate of 125 beats/minute (score 2); shows no grimace or reflex (score 0); has flaccid muscle tone (score 0); and has weak, irregular breathing (score 1). The total APGAR score is 4. This infant needs ventilation and temperature support.

VII. PUERPERIUM

- **A**. The puerperium extends from immediately after delivery of the baby until the reproductive tract returns to the nonpregnant state in approximately 4–6 weeks.
- **B**. Important events that occur are:
 - **1**. Involution of the uterus.
 - 2. Afterpains due to uterine contractions.
 - **3**. Uterine discharge (lochia).
 - **4. In nonlactating women**, menstrual flow returns within 6–8 weeks postpartum and ovulation returns 2–4 weeks postpartum.
 - **5. In lactating women**, ovulation may return within 10 weeks postpartum. Birth control protection afforded by lactation is assured for only 6 weeks, after which time pregnancy is possible.

VIII. LACTATION

- A. During pregnancy, hPL, PRL, progesterone, estrogens, cortisol, and insulin stimulate the growth of lactiferous ducts and proliferation of epithelial cells to form alveoli; alveoli secrete colostrum.
- **B.** After delivery of the baby, lactation is initiated by a decrease in progesterone and estrogens along with the release of PRL from the adenohypophysis. This initiates **milk production**.
- **C. During suckling,** a stimulus from the breast inhibits the release of PRL-inhibiting factor from the hypothalamus, thereby causing a **surge in PRL**, which increases milk production. In addition, stimulation of the nipples during suckling causes a **surge of oxytocin**, which causes the expulsion of accumulated milk ("milk letdown") by stimulating myoepithelial cells.

IX. SMALL-FOR-GESTATIONAL AGE (SGA) INFANT

- **A.** SGA, fetal growth restriction (FGR), intrauterine growth restriction (IUGR), and low birth weight are all terms used to describe a small baby or a fetus that has not reached its growth potential.
- **B.** Although the definition is controversial, the most common definition of SGA is a body weight **below the tenth percentile for gestational age**.

254 BRS Embryology

- **C.** The clinical features of a SGA infant include thin, loose, peeling skin; decreased skeletal muscle mass; decreased subcutaneous adipose tissue; shrunken or "wizened" facial appearance; thin umbilical cord; meconium staining; difficult cardiopulmonary transition; meconium aspiration; persistent pulmonary hypertension; greater rates of neonatal death, necrotizing enterocolitis, and respiratory distress; impaired thermoregulation; hypoglycemia; polycythemia; hyperviscosity; impaired immune function; and increased fetal, neonatal, and perinatal mortality.
- **D**. The methods for clinically estimating gestation age include:
 - **1.** Measurement of the fundal height, which is the distance between the upper edge of the pubic symphysis and the top of the uterine fundus, using a tape measure.
 - 2. Ultrasound measurement of the fetal abdominal circumference.
 - **3**. Ultrasound measurement of fetal weight.
- E. SGA may be caused by **maternal factors**, which include:
 - **1**. Severe maternal starvation
 - **2**. Maternal hypoxemia
 - **3**. Preeclampsia
 - 4. Maternal viral or parasitic infections
 - **5**. Maternal substance abuse
 - **6.** Toxic exposures (e.g., warfarin, anticonvulsants, antineoplastic drugs, and folic acid antagonists)
 - **7**. High altitude
 - **8.** Demographic factors (e.g., race, maternal age at first birth, and pregnancy at the extremes of reproductive life)
- **F.** SGA may be caused by **fetal factors**, which include:
 - 1. Karyotype abnormalities (e.g., trisomies, autosomal deletions, mosaicism)
 - 2. Genetic syndromes (e.g., Bloom syndrome, dwarfism, Russell-Silver syndrome)
 - **3.** Major congenital anomalies
 - 4. Multiple gestation (e.g., twins, triplets, quintuplets, etc.).
- **G.** SGA may be caused by **placental factors**, which include:
 - 1. Abnormal uteroplacental vasculature
 - 2. Abruptio placenta
 - **3.** Gross placental anomalies (e.g., single umbilical artery, velamentous umbilical cord insertion, placental hemangioma).

X. COLLECTION AND STORAGE OF UMBILICAL CORD BLOOD (UCB)

- **A.** UCB is the blood that remains in the umbilical cord and placenta following the birth of an infant.
- **B**. The importance of the collection and storage of UCB relates to the fact that UCB contains **hematopoietic stem cells**, which can be used to reconstitute the bone marrow in patients with a wide variety of malignant and nonmalignant diseases (e.g., acute and chronic leukemia, lymphoma, aplastic anemia, sickle cell anemia, thalassemia major, etc.).
- **C.** The in utero collection of UCB involves the following steps: after delivery of the infant, the umbilical cord is clamped and cut in the usual manner; before expulsion of the placenta, a 16 gauge needle is inserted into the umbilical vein located within the umbilical cord; UCB is allowed to drain into a collection bag containing an anticoagulant solution; collection time is usually 2–4 minutes, and ideally 40–60 mL of UCB is collected.

Study Questions for Chapter 22

1. Human chorionic gonadotropin (hCG) is produced by which of the following?

- (A) Ectoderm
- (B) Cytotrophoblast
- (C) Decidua basalis
- (D) Syncytiotrophoblast
- (E) Mesoderm

2. A reliable index of fetal–placenta function is maternal urinary level of

- (A) estrone
- (B) human placental lactogen (hPL)
- (C) prolactin (PRL)
- (D) progesterone
- (E) estriol

3. The first fetal movements occur in which of the following trimesters?

- (A) First trimester
- (B) Second trimester
- (C) Third trimester

4. The Doppler fetal heart rate is first audible in which of the following trimesters?

- (A) First trimester
- (B) Second trimester
- (C) Third trimester

5. The lungs become capable of respiration in which of the following trimesters?

- (A) First trimester
- (B) Second trimester
- (C) Third trimester

6. Which of the following structures produces progesterone late in pregnancy?

- (A) Placenta
- (B) Corpus luteum
- (C) Syncytiotrophoblast
- **(D)** Fetal adenohypophysis
- (E) Maternal liver

Answers and Explanations

- **1. D.** The syncytiotrophoblast produces hCG.
- **2. E.** Maternal urinary levels of estriol have long been recognized as a reliable index of fetal–placental function because estriol production is dependent on a normal functioning fetal adrenal cortex, fetal liver, and placenta.
- **3. B**. The first fetal movements occur in the second trimester.
- **4. A.** The fetal heart rate is first audible in the first trimester at around week 12.
- 5. B. The lungs become capable of respiration at weeks 25–27 in the second trimester.
- **6. A.** Progesterone is a steroid hormone that is produced by the placenta up until birth. The corpus luteum also produces progesterone, but only until week 8 of pregnancy.

chapter **23** Teratology

I. INTRODUCTION

A teratogen is any infectious agent, drug, chemical, or irradiation that alters fetal morphology or fetal function if the fetus is exposed during a critical stage of development.

- A. The resistant period (week 1 of development) is the time when the conceptus demonstrates the "all-or-none" phenomenon (i.e., the conceptus will either die as a result of the teratogen or survive unaffected).
- B. The maximum susceptibility period (weeks 3-8; embryonic period) is the time when the embryo is most susceptible to teratogens because all organ morphogenesis occurs at this time.
- **C.** The lowered susceptibility period (weeks 9–38; fetal period) is the time when the fetus has a lowered susceptibility to teratogens because all organs systems have already formed; teratogen exposure at this period generally results in a *functional* derangement of an organ system.

II. INFECTIOUS AGENTS

Infectious agents may be viral or nonviral. However, bacteria appear to be nonteratogenic.

- A. Viral infections may reach the fetus via the amniotic fluid following vaginal infection, transplacentally via the bloodstream after maternal viremia, or by direct contact during passage through an infected birth canal.
 - 1. Rubella virus (German measles; member of TORCH—see Section III)
 - a. The rubella virus belongs to the **Togaviridae** family, which are **enveloped**, **icosahedral**, positive, single-stranded RNA viruses.
 - **b**. The rubella virus is transmitted to the fetus **transplacentally**.
 - c. The risk of fetal rubella infection is greatest during the first month of pregnancy and apparently declines thereafter.
 - d. Fetal rubella infection results in the classic triad of cardiac defects (e.g., patent ductus arteriosus, pulmonary artery stenosis, and atrioventricular [AV] septal defects), cataracts, and low birth weight.
 - e. With the pandemic of rubella in 1964, the complexity of this syndrome became apparent, and the term **expanded rubella syndrome** became standard.
 - f. The clinical manifestations of expanded rubella syndrome include intrauterine growth retardation (most common manifestation), hepatosplenomegaly, generalized adenopathy, hemolytic anemia, hepatitis, jaundice, meningoencephalitis, eye involvement (e.g., cataracts, glaucoma, retinopathy), bluish-purple lesions on a yellow, jaundiced skin ("blueberry muffin spots"), osteitis (celery stalk appearance of long bones), and sensorineural deafness.

2. Cytomegalovirus (CMV; member of TORCH)

- a. CMV belongs to the Herpesvirus family, which are large, enveloped, icosahedral, doublestranded DNA viruses.
- ${\bf b}.\ {\rm CMV}$ is a ubiquitous virus and the most common fetal infection.
- **c.** CMV is transmitted to the fetus **transplacentally**, with more severe malformations when infection occurs during the first half of pregnancy.
- **d.** CMV is also transmitted to perinates **during passage through the birth canal or through breast milk** but causes no apparent disease.
- e. The most common manifestation of CMV fetal infection is sensorineural deafness.
- **f. Cytomegalic inclusion disease** (characterized by multiorgan involvement) is the most serious but least common manifestation of CMV infection and results in intrauterine growth retardation, microcephaly, chorioretinitis, hepatosplenomegaly, osteitis (celery stalk appearance of long bones), discrete cerebral calcifications, mental retardation, heart block, and bluish-purple lesions on a yellow jaundiced skin ("blueberry muffin spots").
- 3. Herpes simplex virus (HSV-1; HSV-2; member of TORCH)
 - a. HSV belongs to the Herpesvirus family, which are large, enveloped, icosahedral, doublestranded DNA viruses.
 - **b.** Most neonatal infections are caused by HSV-2 (75% of the cases).
 - **c.** HSV-2 is most commonly transmitted to the fetus by **direct contact during passage through an infected birth canal** (intrapartum; 85% of cases).
 - **d.** At 10–11 days of age, some intrapartum HSV-infected infants present with the disease localized to the **skin** (discrete vesicular lesion, large bullae, or denuded skin; hallmark signs), **eye** (keratoconjunctivitis, uveitis, chorioretinitis, cataracts, retinal dysplasia), or **mouth** (ulcerative lesions of the mouth, tongue, or palate).
 - e. At 15–17 days of age, some intrapartum HSV-infected infants present with central nervous system (CNS) involvement (with or without skin, eye, or mouth involvement) due to axonal retrograde transport of HSV to the brain. Clinical manifestations of CNS involvement include lethargy, bulging fontanelles, focal or generalized seizures, opisthotonus, decerebrate posturing, and coma.
 - **f.** The only intervention shown to prevent neonatal HSV infection is delivery by cesarean section within 4–6 hours of rupture of the amnionic membranes.
- 4. Varicella zoster virus (VZV; varicella or chickenpox)
 - a. VZV belongs to the Herpesvirus family, which are large, enveloped, icosahedral, doublestranded DNA viruses.
 - **b.** VZV is the etiology of two clinical syndromes: a **primary infection** (varicella or chickenpox usually occurs in children) and a **secondary infection** (herpes zoster or shingles usually occurs in adults along a single sensory dermatome).
 - **c.** VZV is transmitted to the fetus **transplacentally** in 25% of the cases, but **fetal varicella syndrome** develops only when maternal VZV infection occurs in the first trimester.
 - **d**. The clinical manifestations of fetal varicella syndrome include cicatricial (scarring) skin lesions in a dermatomal pattern, limb and digit hypoplasia, limb paresis/paralysis, hydrocephalus, microcephaly/mental retardation, seizures, chorioretinitis, and cataracts.
- 5. Human immunodeficiency virus (HIV)
 - a. HIV belongs to the **Retroviridae** family (or **Lentivirus** subfamily), which are **diploid**, enveloped, positive, single-stranded RNA viruses.
 - **b.** Most researchers believe that HIV is the major cause of **acquired immunodeficiency syndrome (AIDS)**. However, there exist cases of AIDS in those who are HIV-negative. Some researchers thus believe that multiple blood transfusions (e.g., hemophiliacs), consumption of megadoses of antibiotics as prophylaxis against sexually transmitted diseases, and continuous use of drugs to heighten orgasm (e.g., amyl and butyl nitrite) may destroy CD4⁺ T cells and lead to AIDS.
 - **c**. The placenta is a highly effective barrier to HIV infection of the fetus.
 - **d.** HIV may be transmitted to the fetus **through blood containing HIV or HIV-infected lymphoid cells** near the time of delivery or after 35 weeks of gestation.
 - e. HIV infection does not appear to cause any congenital malformations.

B. Nonviral infections

- 1. Toxoplasma gondii (TG; member of TORCH)
 - a. TG is a protozoan parasite whose life cycle is divided into a sexual phase that occurs only in cats (the definitive host) and an asexual phase that occurs in intermediate hosts.
 - **b.** Generally speaking, mice that eat cat feces contaminate fields, thereby infecting cows, sheep, and pigs.
 - **c.** TG is transmitted to humans primarily through ingestion of oocyst-containing water or food or consumption of cyst-containing raw or undercooked meat. In addition, inhalation or ingestion of oocysts from soil, dust, or cat litter box may occur.
 - d. TG is transmitted to the fetus transplacentally.
 - **e.** TG infection results in miscarriage, perinatal death, chorioretinitis, microcephaly, hydrocephalus, and encephalomyelitis with cerebral calcification.
 - **f.** About 10% of congenitally infected infants who have severe TG die, and most surviving infants are left with major neurological sequelae (e.g., mental retardation, seizures, spasticity, and visual deficits).
- 2. Treponema pallidum (TP; Figure 23.1)
 - a. TP is a spirochete causing syphilis.
 - **b.** TP is transmitted to the fetus **transplacen-tally**.
 - c. TP infection results in miscarriage; perinatal death; hepatosplenomegaly; hepatitis; joint swelling; vesiculobullous blisters whose fluid contains active spirochetes and is highly infective; nasal discharge with rhinitis; a maculopapular rash located on the extremities that is initially oval and pink but then turns copper brown and desquamate (palms and soles); eye findings that include chorioretinitis, glaucoma, cataracts, and uveitis; anemia; jaundice; focal erosions of the proximal medial tibia (Wimberger sign); osteitis (celery stalk appearance of long bones); saw-toothed appearance of the metaphysis of long bones; abnormal teeth (Hutchinson teeth); acute syphilitic leptomeningitis, which may present as neck stiffness; and chronic meningovascular syphilis (cranial nerve palsy, hydrocephalus, cerebral infarction).
 - **d**. The upper photograph in Figure 23.1 shows an infant with TP infection. Note the vesiculobullous blisters on the legs and feet along with marked skin peeling. The lower photograph also shows an infant with TP infection. Note the nasal discharge with rhinitis.

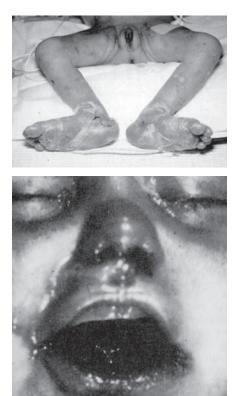


FIGURE 23.1. Treponema pallidum infection.

III. TORCH INFECTIONS (FIGURE 23.2)

TORCH infections are caused by **<u>T</u>oxoplasma**, **<u>r</u>ubella**, **<u>c</u>ytomegalovirus**, <u>h</u>erpes virus</u>, and <u>o</u>ther bacterial and viral infections that are grouped together because they cause similar clinical and pathological manifestations. See previous discussion for specifics.

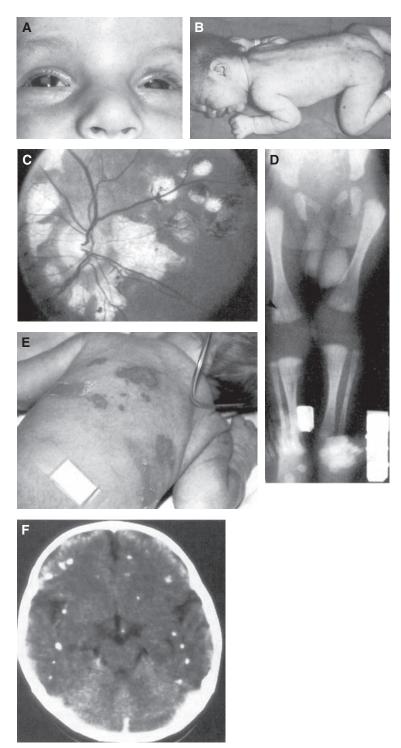


FIGURE 23.2. TORCH infections (caused by *Toxoplasma*, rubella, cytomegalovirus, herpes virus, and other bacterial and viral agents). (A) Cataracts seen with congenital rubella and herpes simplex virus infections. (B) Blueberry muffin spots seen with congenital rubella and cytomegalovirus infections due to extramedullary hematopoiesis. (C) Patchy, yellow-white lesions of chorioretinitis seen with congenital cytomegalovirus, herpes simplex virus, and *Toxoplasma gondii* infections. (D) Celery stalk appearance of the femur (*arrowhead*) and tibia seen with congenital rubella, cytomegalovirus, and syphilis infections. The alternating bands of longitudinal translucency and density indicate a disturbance in normal bone metabolism. (E) Cutaneous vesicular lesions surrounded by an erythematous border on the back and right arm seen with congenital herpes simplex virus infections. (F) Diffuse cerebral calcifications seen with congenital cytomegalovirus and *Toxoplasma gondii* infections.

IV. CHILDHOOD VACCINATIONS

A general practical guide to childhood vaccinations is as follows:

- A. MMR vaccine protects against measles, mumps, and rubella and is given in two doses at 12–15 months and at 4–6 years.
- **B.** Polio vaccine protects against polio and is given in four doses at 2 months, 4 months, 6–18 months, and 4–6 years.
- **C. DTaP vaccine** protects against **d**iphtheria, **t**etanus, and **p**ertussis and is given in five doses at 2 months, 4 months, 6 months, 15–18 months, and 4–6 years. A tetanus booster is given at 11 years.
- **D. Hib vaccine** protects against **H**aemophilus **i**nfluenza type **b** and is given in four doses at 2 months, 4 months, 6 months, and 12–15 months.
- **E. HBV vaccine** protects against **h**epatitis **B** and is given in four doses at birth, 1 month, 4 months, and 6–18 months.
- F. Varicella vaccine protects against chicken pox and is given in one dose at 12–18 months.
- **G. Pneumococcal vaccine (PCV7)** protects against pneumonia, blood infections, and meningitis and is given in four doses at 2 months, 4 months, 6 months, and 12–25 months.

V. CATEGORY X DRUGS (ABSOLUTE CONTRAINDICATION IN PREGNANCY)

- A. Thalidomide is an antinauseant drug that was prescribed for pregnant women (no longer used) for "morning sickness." This drug can cause limb reduction (e.g., meromelia, amelia), ear and nasal abnormalities, cardiac defects, lung defects, pyloric or duodenal stenosis, and gastrointestinal atresia. Thalidomide has undergone a resurgence in use for treatment of multiple myeloma due to its antiangiogenic properties.
- **B.** Aminopterin and methotrexate are folic acid antagonists used in cancer chemotherapy. These drugs can cause small stature, abnormal cranial ossification, ocular hypertelorism, low-set ears, cleft palate, and myelomeningocele.
- **C. Busulfan (Myleran), chlorambucil (Leukeran)**, and **cyclophosphamide (Cytoxan)** are **alkylating agents** used in cancer chemotherapy. These drugs can cause cleft palate, eye defects, hydronephrosis, renal agenesis, absence of toes, and growth retardation.
- D. Phenytoin (Dilantin) is an antiepileptic drug. In 30% of cases, this drug causes fetal hydantoin syndrome, which results in growth retardation, mental retardation, microcephaly, craniofacial defects, and nail and digit hypoplasia. In the majority of cases, this drug causes cleft lip, cleft palate, and congenital heart defects.
- E. Triazolam (Halcion) and estazolam (Prosom) are hypnotic drugs. These drugs can cause cleft lip and cleft palate, especially if used in the first trimester of pregnancy.
- F. Warfarin (Coumadin) is an anticoagulant drug that acts by inhibiting vitamin K-dependent coagulation factors. This drug can cause stippled epiphyses, mental retardation, microcephaly,

262 BRS Embryology

seizures, fetal hemorrhage, and optic atrophy in the fetus. Warfarin inhibits **vitamin K epoxide reductase**. Consequently, vitamin K–dependent coagulation factors (II, VII, IX, X) are not produced.

- **G. Isotretinoin (Accutane)** is a **retinoic acid derivative** used in the treatment of **severe acne**. This drug can cause CNS abnormalities, external ear abnormalities, eye abnormalities, facial dysmorphia, and cleft palate (i.e., **vitamin A embryopathy**).
- **H. Clomiphene (Clomid)** is a nonsteroidal **ovulatory stimulant** used in women with ovulatory dysfunction. Although no causative evidence of a deleterious effect of clomiphene on the human fetus has been established, there have been reports of birth anomalies.
- I. Diethylstilbestrol (DES) is a synthetic estrogen that was used to prevent spontaneous abortion in women. This drug can cause cervical hood, T-shaped uterus, hypoplastic uterus, ovulatory disorders, infertility, premature labor, and cervical incompetence in women who were exposed to DES in utero. These women are also subject to increased risk of clear cell carcinoma of the vagina later in life.
- J. Ethisterone, norethisterone, and megestrol (Megace) are synthetic progesterone derivatives. These drugs can cause masculinization of genitalia in female embryos, hypospadias in males, and cardiovascular anomalies.
- K. Norethindrone (Ovcon, Norinyl) and levonorgestrel (Levlen) are oral contraceptives that contain a combination of estrogen (e.g., ethinyl estradiol or mestranol) and progesterone (e.g., norethindrone or levonorgestrel) derivatives. These drugs can cause an increase of fetal abnormalities, particularly the VACTERL syndrome consisting of vertebral, <u>a</u>nal, <u>c</u>ardiac, <u>t</u>racheo<u>e</u>sophageal, <u>r</u>enal, and <u>l</u>imb malformations.
- L. Nicotine is a poisonous, additive alkaloid delivered to the fetus through cigarette smoking by pregnant women (cigarette smoke also contains hydrogen cyanide and carbon monoxide). This drug can cause intrauterine growth retardation, premature delivery, low birth weight, and fetal hypoxia due to reduced uterine blood flow and diminished capacity of the blood to transport oxygen to fetal tissue.
- M. Alcohol is an organic compound delivered to the fetus through recreational or addictive (i.e., alcoholism) drinking by pregnant women. This drug can cause fetal alcohol syndrome, which results in mental retardation, microcephaly, holoprosencephaly, limb deformities, craniofacial abnormalities (i.e., hypertelorism, smooth philtrum, short palpebral fissures, flat nasal bridge, maxillary [midface] hypoplasia, and a thin upper lip), and cardiovascular defects (i.e., ventricular septal defects). Fetal alcohol syndrome is the leading cause of preventable mental retardation. The threshold dose of alcohol has not been established, so "no alcohol is good alcohol" during pregnancy.

VI. CATEGORY D DRUGS (DEFINITE EVIDENCE OF RISK TO FETUS)

- **A. Tetracycline (Achromycin) and doxycycline (Vibramycin)** are **antibiotics** in the tetracycline family. These drugs can cause permanently yellow-stained teeth and hypoplasia of enamel.
- B. Streptomycin, amikacin, and tobramycin (Nebcin) are antibiotics in the aminoglycoside family. These drugs can cause cranial nerve (CN) VIII toxicity with permanent bilateral deafness and loss of vestibular function.
- **C.** Phenobarbital (Donnatal) and pentobarbital (Nembutal) are barbiturates used as sedatives. Studies have suggested a higher incidence of fetal abnormalities with maternal barbiturate use.

- **D. Valproic acid (Depakene)** is an **antiepileptic** drug. This drug can cause neural tube defects, cleft lip, and renal defects.
- E. Diazepam (Valium), chlordiazepoxide (Librium), alprazolam (Xanax), and lorazepam (Ativan) are anticonvulsant or antianxiety drugs. These drugs can cause cleft lip and cleft palate, especially if used in the first trimester of pregnancy.
- F. Lithium is used in treatment of **manic-depressive disorder**. This drug can cause fetal cardiac defects (i.e., Ebstein anomaly and malformations of the great vessels).
- **G. Hydrochlorothiazide (Diuril)** is a **diuretic** and **antihypertensive** drug. This drug can cause fetal jaundice and thrombocytopenia.

VII. CHEMICAL AGENTS

- A. Organic mercury. Consumption of organic mercury during pregnancy results in fetal neurological damage, including seizures, psychomotor retardation, cerebral palsy, blindness, and deafness.
- **B.** Lead. Consumption of lead during pregnancy results in abortion due to embryotoxicity, growth retardation, increased perinatal mortality, and developmental delay.
- **C. Polychlorinated biphenyls (PCBs)**. Consumption of PCBs during pregnancy results in result in intrauterine growth retardation, dark-brown skin pigmentation, exophthalmos, gingival hyperplasia, skull calcification, mental retardation, and neurobehavioral abnormalities.
- D. Potassium iodide (PI). PI is found in over-the-counter cough medicines and radiograph cocktails for organ visualization. PI is involved in thyroid enlargement (goiter) and mental retardation (cretinism)
- **E. Bisphenol A** is a common ingredient in plastics (e.g., reusable water bottles, computer housings, dental sealants). It has been reported *in mice* that exposure to bisphenol A during fetal development results in higher rates of breast cancer later in life.
- **F. Phthalates** are a common ingredient in many household products (e.g., vinyl floor covering, detergents, shampoo, deodorants, nail polish, food storage bags, and inflatable toys). It has been reported in humans that high levels of phthalates in pregnant women is associated with incomplete testicular descent in infant sons, suggesting antiandrogenic activity.
- **G.** Methoxychlor (an insecticide) and vinclozolin (a fungicide) are both endocrine disruptors. It has been reported *in mice* that exposure to these endocrine disruptors during fetal development caused changes in mice that affected not only the mice exposed in utero, but also all male mice for at least four subsequent generations (i.e., a transgenerational effect).

VIII. RECREATIONAL DRUGS

- A. Lysergic acid (LSD) has not been shown to be teratogenic.
- B. Marijuana has not been shown to be teratogenic.
- C. Caffeine has not been shown to be teratogenic.

- **D. Cocaine** results in an increased risk of various congenital abnormalities, stillbirths, low birth weight, and placental abruption.
- **E. Heroin** has not been shown to be teratogenic. It is drugs that are often taken with heroin that produce congenital anomalies. The principal adverse effect is **severe neonatal withdrawal**, causing death in 3%–5% of neonates. **Methadone** (used to replace heroin) is not teratogenic but is also associated with severe neonatal withdrawal.

IX. IONIZING RADIATION

- A. Acute high dose (>250 rads) results in microcephaly, mental retardation, growth retardation, and leukemia. After exposure to greater than 25 rads, classic fetal defects will be observed, so that termination of pregnancy should be offered as an option. Much information concerning acute high-dose radiation has come from studies of the atomic explosions over Hiroshima and Nagasaki.
- **B. Diagnostic radiation**. Even if several radiographic studies are performed, rarely does the dose add up to exposure significant enough to produce fetal defects. **Radioactive iodine cocktails** for organ visualization should be avoided after week 10 of gestation because fetal thyroid development can be impaired.

Study Questions for Chapter 23

1. Which of the following time intervals best describes the maximum susceptibility period?

- (A) Week 1
- (B) Weeks 3-8
- (C) Weeks 9-38

2. Which of the following time intervals best describes the resistant period?

- (A) Week 1
- **(B)** Weeks 3–8
- (C) Weeks 9–38

3. The most common viral infection is

- (A) cytomegalovirus
- (B) rubella virus
- (C) herpes virus type 2
- (D) varicella zoster virus
- (E) HIV

4. Which of the following is a parasite found in cats?

- (A) Treponema pallidum
- (B) Toxoplasma gondii
- (C) Rubella virus
- (D) Cytomegalovirus
- (E) Varicella zoster virus

5. Warfarin falls into which category of drugs?

- (A) Category X drugs
- (B) Category D drugs

6. Valium falls into which category of drugs?

- (A) Category X drugs
- (B) Category D drugs

Answers and Explanations

- **1. B.** The embryonic period (weeks 3–8) is the time when the embryo is most susceptible to teratogens because all organ morphogenesis occurs at this time.
- **2. A.** Week 1 is the resistant period when the conceptus demonstrates the "all-or-none" phenomenon (i.e., the conceptus will either die as a result of the teratogen or survive unaffected).
- **3. A.** Cytomegalovirus (CMV) is the most common fetal infection and is the cause of cytomegalic inclusion disease.
- **4. B**. *Toxoplasma gondii* is a protozoan parasite found in cats and may be transmitted to the fetus transplacentally.
- 5. A. Warfarin is a Category X drug.
- 6. B. Valium is a Category D drug.

Comprehensive Examination

1. A 25-year-old woman comes into your office complaining of "spotting" and having "stomach pains" as she points to her lower abdominal area. She noted that she and her husband were trying to have a baby and that she had her last period about 5 weeks ago. She said that after talking with her girlfriends about her symptoms, she was a little afraid of what it could be, so she decided to see a physician. Her chart shows that she has had a history of pelvic inflammatory disease. Relevant physical exam findings include a tender pelvic mass was palpable, amenorrhea, light vaginal bleeding, and lower abdominal pain. Relevant laboratory findings include elevated β-human chorionic gonadotropin (hCG) levels but lower than expected for pregnancy, lower-than-normal progesterone levels, and ultrasound that showed a mass in the ampulla of the left uterine tube. Which of the following is the most likely diagnosis?

- A. Choriocarcinoma
- **B**. A bleeding corpus luteum
- **C.** A spontaneous abortion
- **D**. Ectopic tubal pregnancy
- E. Appendicitis

2. A 31-year-old woman comes into the office complaining of "running a fever," being nauseated, and losing weight-"about 15 pounds or so"-over the last month. She tells you that she had a miscarriage about 2 months ago and "all of a sudden these other problems come up." She added that she said that the doctors said she had "preeclampsia" during her first trimester of that pregnancy. She said that she was supposed to come back in, but she didn't because she "felt depressed about losing the baby." She remarks that she hasn't had any changes in her diet and remarked that she "thought she would have gained weight with all the food she was eating." Relevant physical exam findings include normal thyroid gland on palpation, no coughing of blood, and no diarrhea. Relevant laboratory findings include elevated hCG levels and normal thyroxine (T₄) and thyroid-stimulating hormone (TSH) levels. Which of the following is the most likely diagnosis?

- A. Achalasia
- B. Hyperthyroidism
- C. Pelvic inflammatory disease
- **D.** Hydatidiform mole
- **E.** Gestational trophoblastic neoplasia (or choriocarcinoma)

3. A 37-year-old woman who is in her third trimester comes into your clinic complaining of bleeding that lasted for about "an hour or two." She remarks she noticed that the bleeding was "very bright red" in color but felt no noticeable pain. She said that she did nothing to cause the bleeding and "was concerned for the safety of her baby." Relevant physical exam findings include no abdominal or pelvic pain on palpation. Relevant laboratory findings include transvaginal ultrasound showing an intact, normally implanted placenta; however, the placenta was located in close proximity of the internal os. Which of the following is the most likely diagnosis?

- A. Placenta previa
- **B**. Placental abruption
- **C.** Placenta accreta
- **D**. Velamentous placenta
- E. Membranous placenta

4. A 34-year-old woman who is in her third trimester complains of her hands and face "swelling up a few days ago." She remarks that she has also felt like "her heart was racing a mile a minute." Relevant physical exam findings include hypertension (>160/110 mm Hg) and edema of the hands and face. Relevant laboratory findings include proteinuria (>5 grams/24 hours), and ultrasound was unremarkable. Which of the following is the most likely diagnosis?

- A. Molar pregnancy
- **B**. Severe preeclampsia
- **C.** Choriocarcinoma
- **D**. Ectopic tubal pregnancy
- E. Placental abruption

5. A distraught mother brings her 2-monthold daughter into your office saying that she noticed a "lump growing from her child's bottom." She states that she "noticed it about a 2 weeks ago while changing her daughter's diaper." The lump was small and she so didn't think much of it, but over time it has "grown to the size of a baseball." Relevant physical exam findings include a large spheroid mass that appeared to be very firm on palpation. Relevant laboratory findings include biopsy of the mass showing tissue containing hair, teeth, muscle fibers, and thyroid follicular cells. Which of the following is the most likely diagnosis?

- **A**. Spina bifida with meningocele
- **B.** Sacrococcygeal teratoma
- **C.** Spina bifida with meningomyelocele
- **D**. Chordoma
- E. Caudal dysplasia (sirenomelia)

6. After the delivery of a healthy baby girl, a physician notices a tuft of hair on the lower back of the child. The physician asked the mother about her prenatal health care, and she said she didn't take folic acid until the second month of pregnancy because she didn't know she was pregnant until then. Relevant physical exam findings include a tuft of hair on the lower back with no noticeable sac formation. Relevant laboratory findings include radiograph showing a defect in the vertebral arches but no sac filled with fluid or spinal cord. Which of the following is the most likely diagnosis?

- **A**. Spina bifida with meningocele
- **B.** Spina bifida with meningomyelocele
- **C.** Spina bifida occulta
- **D**. Spina bifida with rachischisis
- E. Caudal dysplasia (sirenomelia)

7. A distraught father comes in with his 10-year-old son, saying that his son began "turning blue" when he was out playing catch with him. His son remarked that he "just felt really tired" when he was running after the ball. The father is concerned that his son will not be able to play in the big game this weekend. Relevant physical exam findings include loud holosystolic ejection murmur on auscultation, cyanosis, and clubbing of fingernails. Relevant laboratory findings include echocardiogram showing right ventricular hypertrophy. Which of the following is the most likely diagnosis?

- **A.** Membranous ventricular septal defect
- **B.** Eisenmenger complex
- C. Atrial septal defect
- **D.** Patent ductus arteriosus
- E. Coarctation of the aorta

8. A 39-year-old man comes to your office complaining of "heartburn after trying to eat" and not being able to swallow anything. He states, "I have tried everything from water to steaks; it doesn't matter what I eat, I always have trouble swallowing it down." Relevant physical exam findings include dysphagia and normal thyroid on palpation. Relevant laboratory findings include barium swallow radiograph showing a dilated esophagus with an area of distal stenosis (almost looks like a "bird's beak") and normal T₄ levels. Which of the following is the most likely diagnosis?

- A. Esophageal atresia
- **B.** Thyroid tumor
- **C.** Esophageal stenosis
- **D**. Reflux esophagitis
- E. Achalasia

9. A mother brings her 1-month-old son into the clinic, complaining of her son "vomiting all over the place when he tries to eat something." She said her son's vomiting looks like it was "shot out of a cannon." Relevant physical findings include a small, nontender, palpable mass on the right costal margin. Relevant laboratory findings include barium swallow radiograph showing a narrow pyloric channel and abdominal ultrasound showing a hypertrophic pylorus. Which of the following is the most likely diagnosis?

- A. Esophageal hiatal hernia
- **B.** Hypertrophic pyloric stenosis
- **C.** Malrotation of the midgut with volvulus
- **D**. Esophageal stenosis
- E. Biliary atresia

10. A man brings his 3-year-old son into the office, complaining that his son is having "bad stomach pains" and talks about him "running a fever" and "being thirsty all the time." He remarks that his son has not had a bowel movement lately. Relevant physical exam findings include painless rectal bleed-ing, dark red stools, and abdominal distention. Relevant laboratory findings include radiograph showing a remnant of the vitelline duct that was estimated to be about 2 feet from the ileocecal valve and a biopsy showing ectopic gastric and pancreatic mucosal tissue. Which of the following is the most likely diagnosis?

- A. Volvulus
- **B.** Intussusception
- **C.** Foreign-body obstruction
- **D**. Meckel's diverticulum
- E. Biliary atresia

11. A nurse comes into your office informing you that the child you delivered yesterday failed to pass meconium. The nurse remarks that the child also cries on palpation of the abdominal area. Relevant physical exam finding include abdominal distention, megacolon on palpation, and gushing of fecal material on a rectal digital exam. Relevant laboratory findings include barium enema showing a dilated proximal segment and a narrow distal segment of the sigmoid colon. Which of the following is the most likely diagnosis?

- A. Rectal atresia
- **B**. Rectovesical fistula
- **C.** Hirschsprung disease
- **D**. Anorectal agenesis
- E. Intussusception

12. A 33-year-old man comes in complaining of "fever and chills" and that he "has to constantly go to the bathroom." He also indicates that he has pain just below the abdominal area on the right side. He states he has not had sexual intercourse in more than 6 months. He suspects that it may be urinary tract infection because he "has had a lot of them over the years." Relevant physical exam findings include flank pain and costovertebral angle tenderness. Relevant laboratory findings include normal calcium levels and computed tomography (CT) scan showing an unusual kidney appearance. Which of the following is the most likely diagnosis?

- A. Urachal fistula
- B. Horseshoe kidney
- C. Pyelonephritis
- **D**. Kidney stones
- E. Polycystic kidney disease

13. A 16-month-old boy has had recurrent bouts of cyanosis since birth. His parents tell vou that "he cannot keep up with the other children his age." The parents indicate that their boy frequently turns blue, breathes heavily on exertion, and sometimes experiences these difficulties for no reason. On many occasions, they observed their son in a squatting position. Relevant physical exam findings include systolic ejection murmur, cyanosis, clubbing of the fingernails, and a parasternal heave. Relevant laboratory findings include radiographs showing an enlarged right ventricle and "boot-shaped" heart, electrocardiogram showing right ventricular hypertrophy, and echocardiogram showing pulmonary stenosis, right ventricular hypertrophy, overriding aorta, and a ventricular septal defect. Which of the following is the most likely diagnosis?

- A. Tetralogy of Fallot
- B. Tricuspid atresia
- **C.** Total anomalous pulmonary venous return
- **D**. Transposition of the great arteries
- E. Persistent truncus arteriosus

14. A 40-year-old mother brings in her 4-week-old baby boy and tells you that "my baby's face looks funny and he keeps sticking his tongue out." The mother recalls that during the pregnancy she had low α -fetoprotein (AFP) levels. Relevant physical exam findings include a flat occiput; white spots in the iris (Brushfield spots); a large, protruding tongue; small, low-set ears; short feet and hands: a flexion crease across the palms (simian crease); curvature of the fifth digit; systolic ejection murmur; and hypotonia. Relevant laboratory findings include echocardiogram showing an endocardial cushion defect (atrioventricular septal defect) and karyotype analysis showing an extra chromosome 21. Which of the following is the most likely diagnosis?

- A. Cri-du-chat syndrome
- **B**. Edwards syndrome
- **C.** Fragile X syndrome
- **D**. Down syndrome
- **E.** Patau syndrome

15. A 25-year-old woman who is CEO of a new biotech company has been under considerable stress this last year trying to negotiate a contract with a major drug company. She has also been under a very rigorous exercise program because "she just can't stand any fat on her body" and ran in the Boston marathon 4 months ago. Due to her busy schedule, her eating habits have radically changed, and sometimes "the sight of food just disgusts me." She is not on any drug medication. She tells you that recently she met "the guy" and has been sexually active with him for "about 2 months now." She comes to you because her menstrual cycle is 2 weeks late and sometimes she feels nauseated, especially in the morning. Relevant physical exam findings were unremarkable. Relevant laboratory findings include a positive β-human chorionic gonadotropin (hCG) test. Which of the following is the most likely diagnosis?

- **A.** Secondary amenorrhea due to stress
- **B.** Secondary amenorrhea due to anorexia nervosa
- **C**. Pregnancy
- **D.** Turner syndrome
- **E.** Secondary amenorrhea due to antipsychotic drug therapy

16. A father brings his 1-month-old daughter into the clinic, complaining that his daughter frequently "throws up after she eats" and "it just shoots across the room." Relevant physical exam findings include projectile vomiting when the infant is laid on its back after a feeding. Relevant laboratory findings include radiograph showing a portion of the stomach located in the pleural cavity. Which of the following is the most likely diagnosis?

- **A.** Hypertrophic pyloric stenosis
- **B.** Gastroesophageal reflux disease
- C. Esophageal hiatal hernia
- **D**. Congenital diaphragmatic hernia
- **E.** Tracheoesophageal fistula

17. A father brings his 4-year-old daughter into the clinic. He says he noticed "a lump on her lower right side" and that "it has gotten bigger over time." Relevant physical exam findings include a large, palpable mass on the right flank and no evidence of a urinary tract infection (UTI). Relevant laboratory findings include normal catecholamine levels and normal androgen levels, and genetic testing reveals a deletion of a tumor suppression gene on chromosome 11. Which of the following is the most likely diagnosis?

- **A**. Neuroblastoma
- **B.** Pheochromocytoma
- **C.** Congenital adrenal hyperplasia
- **D**. Wilms tumor
- E. Childhood polycystic kidney disease

18. A 45-year-old man comes in complaining of chest and abdominal pain. He also says that his "blood pressure rises every so often" even when he is relaxing at home and that "it's been happening more and more." He says he exercises often and tries to stay in shape because he has a family history of obesity. Relevant physical exam findings include profuse sweating, hypertension, abdominal discomfort, and lungs clear on auscultation. Relevant laboratory findings include radiograph negative for a pulmonary embolism, hyperglycemia, increased urinary vanillylmandelic acid (VMA) and metanephrine levels, and inability to suppress catecholamines with clonidine. Which of the following is the most likely diagnosis?

- **A**. Angina
- **B**. Pneumothorax
- **C.** Myocardial infarction
- **D**. Neuroblastoma
- E. Pheochromocytoma

19. A woman comes in with her 16-year-old daughter and states that her daughter "has not had a menstrual period yet." The daughter says that she is not sexually active and that she is not on any form of birth control. Relevant physical exam findings include ambiguous genitalia, amenorrhea, and early appearance of axillary and pubic hair. Relevant laboratory findings include elevated urinary 17-ketosteroids, elevated serum dehydroepiandrosterone (DHEA) sulfate, and normal or decreased 17-hydroxycorticosteroids, genetic testing reveals 46,XX genotype, and CT head scan reveals no sign of tumor. Which of the following is the most likely diagnosis?

- **A.** Female pseudo-intersexuality
- **B.** Turner syndrome
- **C**. Complete androgen insensitivity
- **D**. Pituitary tumor
- E. Male pseudo-intersexuality

20. A concerned couple brings their 3-weekold son into your office, stating that they think something is wrong with his genital area. They noticed that his testicles appeared to be swollen when they were changing his diaper a week ago. They said that his scrotum felt like a "water-filled balloon." Neither parent could recall any traumatic episode with their son, saying that they have been very protective of him. Relevant physical exam findings include an enlarged, nontender scrotum, testicles not immediately palpable, and no herniated bulge, and flashlight test through the enlarged area showed illumination. Relevant laboratory findings include absence of blood on fluid collection. Which of the following is the most likely diagnosis?

- **A.** Hypospadias
- B. Hematocele
- **C.** Congenial inguinal hernia
- **D**. Cryptorchidism
- **E.** Hydrocele of the testes

21. A mother brings her 5-year-old son into vour office for a follow-up visit. The child previously had a bout with pneumonia, and the mother remarked that the child has been coughing up "vellow and green stuff." The mother mentioned that he has had a number of coughs and colds that were just like this in the past. Relevant physical exam findings include foul-smelling, greenish sputum with speckles of blood, orthopnea, and fever, and his chart is remarkable for cystic fibrosis. Relevant laboratory findings include spirometry showing a reduced forced expiratory volume in 1 second/forced vital capacity (FEV₁/FVC) ratio, radiograph showing multiple cysts that have a "honeycomb" appearance, and CT scanning shows a dilation of bronchi. Which of the following is the most likely diagnosis?

- A. Asthma
- **B.** Bronchitis
- **C.** Bronchiectasis
- **D**. Pneumonia
- **E.** Influenza

22. While delivering a newborn baby girl, you notice that she has abnormal facies, but otherwise the delivery is uncomplicated. About 48 hours after birth, the baby girl develops seizures and muscle spasms. She is lethargic, mildly tachypneic, and jittery. Relevant physical findings include peculiar facies, low-set ears, widely spaced eyes, small mandible, no detectable thymus on palpation, muscle rigidity, harsh holosystolic murmur along the lower left sternal border, and a slight cyanotic tinge to the skin. Relevant laboratory findings include hypocalcemia, a low T lymphocyte count, radiograph showing absent thymic shadow, and cardiac ultrasound showing a congenital heart defect in the conotruncal region, and genetic testing reveals a deletion on chromosome 22q. Which of the following is the most likely diagnosis?

- A. Patau syndrome
- **B.** DiGeorge syndrome
- **C.** Miller-Decker syndrome
- **D.** Prader-Willi syndrome
- E. Treacher Collins syndrome

23. A mother brings in her 2-year-old son to the clinic, stating that she "thinks her son can't hear her when she calls to him." She also indicates that he seems "slower mentally than the other kids" and he isn't "saying any works like Mommy." Her son has been in and out of the hospital a lot due to congenital heart defects and recently had his cataracts removed. She remarks that while she was pregnant toward the beginning she was little sick and "broke out in a rash," but she thinks that "was due to a new lotion she was using." Relevant physical exam findings include microcephaly, deafness, hepatosplenomegaly, blueberry muffin spots, and a hint of jaundice. Which of the following is the most likely diagnosis?

- **A.** HIV infection
- **B.** Herpes simplex virus infection
- **C**. Rubella virus infection
- **D.** Patau syndrome
- E. Down syndrome

24. A young mother brings in her 3-year-old son because of "a white spot in his right eye" that she first noticed in a photograph taken 2 weeks ago. She also tells you that "he seems to be always squinting with his right eye." She remembers hearing about distant family member with the same sort of spot who eventually went blind. Relevant physical exam findings include leukocoria (whitish spots in the pupillary area behind the lens), strabismus (squinting; deviation of the eye that the patient cannot overcome), poor vision in the right eye, and curious family history. Relevant laboratory findings include CT scan showing a solid intraocular tumor with intratumoral calcifications, and genetic testing reveals a deletion on chromosome 13q. Which of the following is the most likely diagnosis?

- **A.** Congenital cataract
- **B.** Congenital glaucoma
- **C**. Retinitis pigmentosa
- D. Papilledema
- E. Retinoblastoma

25. A father brings his 8-year-old son to the clinic and tells you that "he is bleeding a lot" and that "the kid comes in from playing with a lot of bruises." When talking to the son, he tells you that he is "one of the coolest kids in school" because "he can pull his skin out all over the place." Then, he proceeds to demonstrate this fact by pulling his ears out several inches away from his body. His father tells you that last year his son was rushed to the hospital and had emergency surgery because "he had a hole in his intestines." Relevant physical findings include highly elastic, velvety skin; fragile skin that bruises easily; and loose, unstable, hypermobile joints. Relevant laboratory findings include genetic testing revealing a mutation in the gene for peptidyl lysine hydroxylase. Which of the following is the most likely diagnosis?

- A. Ehlers-Danlos syndrome
- **B.** Marfan syndrome
- **C**. Junctional epidermolysis bullosa
- **D**. Osteogenesis imperfecta
- E. Achondroplasia

26. A frantic father rushes his 1-year-old daughter to your clinic, saying that he "thinks his daughter's leg is broken." He says that this is the third time that his daughter has broken a bone in the last 2 months, and he thinks his wife may be abusing the child while he is at work. Relevant physical exam findings include short, deformed limbs, blue sclera of the eye, and kyphoscoliosis, and medical history indicates that there may have been bone fractures at birth. Relevant laboratory findings include radiographs showing multiple, healed fractures of the limbs, and genetic testing reveals a mutation in the gene for type 1 collagen on chromosome 7q22. Which of the following is the most likely diagnosis?

- A. Marfan syndrome
- B. Child abuse
- **C.** Osteogenesis imperfecta
- **D**. Ehlers-Danlos syndrome
- E. Achondroplasia

27. A 22-year-old man comes into the office complaining of blurred vision. He states that he "has not had problems seeing before." He remarks that "his dad and sister had the same problem around his age." Relevant physical exam findings include long, spidery fingers (arachnodactyly), hypermobile joints, arm span much greater than body height, and dislocation of the lens (ectopia lentis). Relevant laboratory findings include CT scan showing a dilated aorta, and genetic testing reveals a mutation for the fibrillin-1 gene on chromosome 15q21.1. Which of the following is the most likely diagnosis?

- A. Marfan syndrome
- B. Klippel-Feil syndrome
- **C.** Osteogenesis imperfecta
- **D**. Ehlers-Danlos syndrome
- E. Achondroplasia

28. A father brings his 12-year-old son and tells you that "his son is feeling weakness in his legs and is beginning to fall a lot." The father says "he can't run as good as he used to." He also says it's gotten so bad that when "he is sitting down he has to put his hands on his thighs just to stand up." Relevant physical exam findings include rapidly progressive muscle weakness with frequent falls; muscle wasting in the legs and pelvis and progressing to shoulders and neck; and pseudohypertrophy of calf muscles. Relevant laboratory findings include no sign of myoglobulinuria, highly elevated creatine phosphokinase (CPK), and electromyography (EMG) showing weakness due to muscle tissue destruction and not nerve damage, and genetic testing reveals a mutation on chromosome Xp21. Which of the following is the most likely diagnosis?

- A. Achondroplasia
- **B**. Myasthenia gravis
- **C.** McArdle disease
- **D**. Polymyositis
- E. Duchenne muscular dystrophy

29. A mother brings in her 5-year-old son at the request of his summer camp counselor. who claims "the boy is hyperactive and doesn't seem to be as smart as the other kids." The mother agrees but has not done anything about until now. The mother indicates that her son was "pretty small at birth" and had a ventricular septal defect that was repaired soon after birth. The mother further tells you that "except for being small and the heart problem, everything else in the pregnancy was just fine; but you know I did have a drink every now and then." Relevant physical exam findings include hypertelorism, smooth philtrum, short palpebral fissures, flat nasal bridge, maxillary (midface) hypoplasia, and a thin upper lip. Relevant laboratory findings include magnetic imaging (MRI) showing holoprosencephaly. Which of the following is the most likely diagnosis?

- **A.** Alcohol consumption during pregnancy
- **B**. Thalidomide consumption during pregnancy
- **C.** Phenytoin consumption during pregnancy
- D. Prader-Willi syndrome
- **E.** Wolf-Hirschhorn syndrome

30. A 25-year-old woman who is 32 weeks pregnant comes into the emergency room while in labor. The infant is stillborn. The mother is obviously upset and says "I want to know what happened." Although the mother had no prenatal care, she says "I am shocked that something went wrong because I had no problems with my first pregnancy; that baby is fine." The mother is sincere when she states that she did not smoke or drink alcohol during the pregnancy. The mother says, "Everything was going along just fine with this pregnancy until just few hours ago." The mother requests an autopsy on the infant. Relevant physical findings of the autopsy include the finding that the body is swollen and jaundiced; yellow deposits in several areas of the brain, especially the basal ganglia; and ascites. Relevant laboratory findings of the autopsy include severe anemia, high serum bilirubin levels, and infant's blood type O positive. Further lab tests were done on the blood of the mother and father. The mother's blood was O negative. The father's blood was O positive. Which of the following is the most likely diagnosis?

- **A.** Oligohydramnios
- **B.** Polyhydramnios
- **C.** Severe preeclampsia
- **D.** Erythroblastosis fetalis
- **E**. Placental abruption

31. A mother brings in her 6-week-old infant son because "I just want him to get checked out." She further tells you that "you know he was born prematurely, and thank God he didn't have any serious breathing problems; but I'm still worried." Relevant physical exam findings include the finding that the infant is small but active and appears to be mildly short of breath, and a harsh, machinelike, continuous murmur in the upper left parasternal area. Which of the following is the most likely diagnosis?

- A. Coarctation of the aorta
- B. Membranous ventricular septal defect
- **C.** Patent ductus arteriosus
- **D**. Double aortic arch
- E. Tetralogy of Fallot

32. A mother brings in her newborn baby girl and says, "My baby coughs and gags every time I try to feed her; one time she even turned blue and it scared me." The mother also indicates that her baby always has a "mouthful of saliva." Relevant physical exam findings include a distended stomach, excessive saliva accumulation, a hint of pneumonitis, and inability to pass a catheter into the infant's stomach. Relevant laboratory findings include radiograph showing a large amount of air in the stomach. Which of the following is the most likely diagnosis?

- A. Esophageal hiatal hernia
- **B.** Hypertrophic pyloric stenosis
- **C.** Tracheoesophageal fistula
- D. Respiratory distress syndrome
- E. Congenital diaphragmatic hernia

33. A frantic mother brings her newborn infant into the emergency room. You immediately notice that the infant is pale, irritable, diaphoretic, and dyspneic. A quick physical exam reveals hepatomegaly, absent femoral pulses, and pulses poor in all four extremities. The infant shows signs of heart failure and shock. An ECG shows pure right ventricular hypertrophy. A chest radiograph reveals generalized cardiomegaly with increased pulmonary vascular markings due to pulmonary venous congestion. The mother tells you that her baby was released from the hospital given a clean bill of health. Which of the following is the most likely diagnosis?

- **A.** Postductal coarctation of the aorta
- **B.** Membranous ventricular septal defect
- C. Patent ductus arteriosus
- **D.** Tetralogy of Fallot
- E. Congenital diaphragmatic hernia

34. A 40-year-old man comes to your office complaining that he has a gradual swelling in the front of his neck that has been growing over the last 6 months. He says, "Doc, at first I did not pay any attention to it, but now it is so big that other people are starting to notice it." He does not complain of any pain, difficulty in swallowing, or problems with breathing. There is no history of trauma, fever, or change in his voice. A physical exam reveals a nontender, non-erythematous fluctuant mass in the midline lower neck with a slight extension to the right side of the neck. The mass moves up and down when the patient swallows and displaces anteriorly with protrusion of the tongue. No cervical lymphadenopathy is noticed. The lung fields are clear, and the heart rate and rhythm are normal. You order a CT scan, which shows a cystic mass extending to the thyroid gland and under the strap muscles. Routine lab blood tests and thyroid function tests are all normal. Which of the following is the most likely diagnosis?

- **A**. Esophageal hiatal hernia
- **B.** Hypertrophic pyloric stenosis
- **C.** Tracheoesophageal fistula
- **D**. Thyroglossal duct cyst
- E. Congenital diaphragmatic hernia

35. A mother is holding her newborn baby in the hospital bed just a few hours after giving birth. The mother becomes alarmed when her baby begins to have a difficult time breathing and rings for help. You arrive at the bedside and observe that the baby is in severe respiratory distress. A quick physical exam reveals that the baby has a barrel-shaped chest, a scaphoid-shaped abdomen, and absence of breath sounds on the left side, and the heartbeat is displaced to the right side. A chest radiograph reveals air/fluid containing bowel in the left-side hemithorax, no visible aerated lung on the left side, contralateral displacement of the heart and other mediastinal structures, compression of the contralateral lung, and reduced size of the abdomen. Which of the following is the most likely diagnosis?

- **A.** Esophageal hiatal hernia
- **B**. Hypertrophic pyloric stenosis
- **C.** Tracheoesophageal fistula
- **D**. Respiratory distress syndrome
- E. Congenital diaphragmatic hernia

Answers and Explanations

- **1. D**. Ectopic tubal pregnancy (ETP) occurs when the blastocyst implants within the uterine tube due to delayed transport. The ampulla of the uterine tube is the most common site of an ectopic pregnancy. The rectouterine pouch (pouch of Douglas) is a common site for an ectopic abdominal pregnancy. ETP is most commonly seen in women with endometriosis or pelvic inflammatory disease. ETP leads to uterine tube rupture and hemorrhage if surgical intervention (i.e., salpingectomy) is not performed. ETP presents with abnormal uterine bleeding and unilateral pelvic pain, which must be differentially diagnosed from appendicitis, an aborting intrauterine pregnancy, or a bleeding corpus luteum of a normal intrauterine pregnancy. See Chapter 2, IV.A.
- **2. E.** Gestational trophoblastic neoplasia (GTN; or choriocarcinoma). GTN is a malignant tumor of the trophoblast that may occur following a normal or ectopic pregnancy, abortion, or a hydatidiform mole. With a high degree of suspicion, elevated hCG levels are diagnostic. Nonmetastatic GTN (i.e., confined to the uterus) is the most common form of the neoplasia, and treatment is highly successful. However, the prognosis of metastatic GTN is poor if it spreads to the liver or brain. See Chapter 3, IV.D.
- **3. A.** Placenta previa. Placenta previa occurs when the placenta attaches in the lower part of the uterus, covering the internal os. The placenta normally implants in the posterior superior wall of the uterus. Uterine (maternal) blood vessels rupture during the later part of pregnancy as the uterus begins to gradually dilate. The mother may bleed to death, and the fetus will also be placed in jeopardy because of the compromised blood supply. Because the placenta blocks the cervical opening, delivery is usually accomplished by cesarean section. This condition is clinically associated with repeated episodes of bright, red vaginal bleeding. Placental abruption would have shown a separation of the placenta and showed dark-red bleeding accompanied by abdominal pain. Placenta accreta would have shown the placenta implanted much deeper in the myometrium. See Chapter 6, IX.G.
- **4. B.** Severe preeclampsia. Preeclampsia is a complication of pregnancy characterized by hypertension, edema, and/or proteinuria. Severe preeclampsia refers to the sudden development of maternal hypertension (blood pressure >160/110 mm Hg), edema (hands and/or face), and proteinuria (>5 grams/24 hours) usually after week 32 of gestation (third trimester). Eclampsia includes the additional symptom of convulsions. The pathophysiology of preeclampsia involves a generalized arteriolar constriction that affects the brain (seizures and stroke), kidneys (oliguria and renal failure), liver (edema), and small blood vessels (thrombocytopenia and disseminated intravascular coagulation). Treatment of severe preeclampsia involves magnesium sulfate (for seizure prophylaxis) and hydralazine (blood pressure control); once the patient is stabilized, delivery of the fetus should ensue immediately. Risk factors include nulliparity, diabetes, hypertension, renal disease, twin gestation, or hydatidiform mole (produces first trimester preeclampsia).

Her symptoms of hypertension, proteinuria, and edema are all telltale signs of preeclampsia. In addition, her advancing age has left to susceptible to this condition. A molar pregnancy is normally seen in the first trimester. Renal disease is unlikely because there were no findings other than proteinuria. See Chapter 6, IX.S.

5. B. Sacrococcygeal teratoma. Sacrococcygeal teratoma (ST) is a tumor that arises from remnants of the primitive streak, which normally degenerates and disappears. ST is derived from pluripotent cells of the primitive streak and often contains various types of tissue (e.g., bone, nerve, hair). ST occurs more commonly in female infants and usually becomes malignant during infancy (must be removed by age 6 months). Caudal dysplasia (sirenomelia) refers to a constellation of syndromes ranging from minor lesions of lower

278 BRS Embryology

vertebrae to complete fusion of the lower limbs. Caudal dysplasia is caused by abnormal gastrulation whereby the migration of mesoderm is disturbed. Spina bifida occurs when the bony vertebral arches fail to form properly, thereby creating a vertebral defect, usually in the lumbosacral region. See Chapter 4, V.E.

- **6. C.** Spina bifida occulta. Spina bifida occurs when the bony vertebral arches fail to form properly, thereby creating a vertebral defect, usually in the lumbosacral region. Spina bifida occulta is evidenced by a tuft of hair in the lumbosacral region. Spina bifida occulta is the least severe variation and occurs in 10% of the population. Spina bifida with meningocele occurs when the meninges protrude through a vertebral defect and form a sac filled with cerebrospinal fluid (CSF). The spinal cord remains in its normal position. Spina bifida with meningomyelocele occurs when the meninges and spinal cord protrude through a vertebral defect and form a sac filled with cerebral defect and form a sac filled with CSF. Spina bifida with rachischisis occurs when the posterior neuropore of the neural tube fails to close during week 4 of development. This condition is the most severe type of spina bifida, causing paralysis from the level of the defect caudally. See Chapter 7, XVIII.A.
- **7. A.** Membranous ventricular septal defect (VSD). Membranous VSD is caused by faulty fusion of the right bulbar ridge, left bulbar ridge, and atrioventricular (AV) cushions. It results in a condition in which an opening between the right and left ventricles allows free flow of blood. A large VSD is initially associated with a left \rightarrow right shunting of blood, increased pulmonary blood flow, and pulmonary hypertension. One of the secondary effects of a large VSD and its associated pulmonary hypertension is proliferation of the tunica intima and tunica media of pulmonary muscular arteries and arterioles, resulting in a narrowing of their lumen. Ultimately, pulmonary resistance may become higher than systemic resistance and cause right \rightarrow left shunting of blood and cyanosis. At this stage, the characteristic of the patient has been termed the "Eisenmenger complex." This is the most common type of VSD. An atrial septal defect (ASD) would have a fixed, split S2, systolic ejection murmur. A patent ductus arteriosus (PDA), which is normally detected in infants, would have a continuous, machine-like murmur. Coarctation of the aorta would show a holosystolic murmur; however, there was no finding of a lack of a femoral pulse or rib notching. See Chapter 5, VII.B.3.
- **8. E.** Achalasia. Achalasia occurs due to the loss of ganglion cells in the myenteric (Auerbach) plexus and is characterized by the failure to relax the lower esophageal sphincter, which will cause progressive dysphagia and difficulty in swallowing. The "bird's beak" appearance on the radiograph is a telltale sign of achalasia. Another telltale sign is that patients have a dysphagia involving both solids and liquids. The physical and lab findings exclude both thyroid disease and masses. Although reflux esophagitis would present with heartburn, it is limited to dysphagia of solids only, not solids and liquid. See Chapter 10, II.A.3.
- **9. B.** Hypertrophic pyloric stenosis. Hypertrophic pyloric stenosis occurs when the muscularis externa in the pyloric region hypertrophies, causing a narrow pyloric lumen that obstructs food passage. It is associated clinically with projectile, nonbilious vomiting after feeding and a small, palpable mass at the right costal margin. An increased incidence of hypertrophic pyloric stenosis has been found in infants treated with the antibiotic erythromycin. See Chapter 10, II.B.3.
- **10. D.** Meckel's diverticulum. Meckel's diverticulum (ileal diverticulum) occurs when a remnant of the vitelline duct persists, thereby forming an outpouching located on the antimesenteric border of the ileum. The outpouching may connect to the umbilicus via a fibrous cord or fistula. A Meckel's diverticulum is usually located about 30 cm proximal to the ileocecal valve in infants and varies in length from 2 to 15 cm. Heterotopic gastric or pancreatic mucosa may be present, which leads to ulceration, perforation, or gastrointestinal bleeding, especially if a large number of parietal cells are present. It is associated clinically with symptoms resembling appendicitis and bright-red or dark-red stools (i.e., bloody). See Chapter 10, III.B.3c.

- **11. C.** Hirschsprung disease (colonic aganglionosis). Hirschsprung disease is caused by the arrest of the caudal migration of neural crest cells. The hallmark is the absence of ganglionic cells in the myenteric and submucosal plexuses most commonly in the sigmoid colon and rectum, resulting in a narrow segment of colon (i.e., the colon fails to relax). Although the ganglionic cells are absent, there is a proliferation of hypertrophied nerve fiber bundles. The most characteristic functional finding is the failure of internal anal sphincter to relax following rectal distention (i.e., abnormal rectoanal reflex). Mutations of the RET protooncogene (chromosome 10q.11.2) have been associated with Hirschsprung disease. It is associated clinically with a distended abdomen, inability to pass meconium, gushing of fecal material on a rectal digital exam, and a loss of peristalsis in the colon segment distal to the normal innervated colon. See Chapter 10, IV.B.3a.
- **12. B.** Horseshoe kidney. The symptoms that the man had (fevers, chills, flank pain, and costovertebral angle tenderness) are classic signs of pyelonephritis as a result of a urinary tract infection (UTI). In this case, the UTI is a result of a urinary tract obstruction caused by a horseshoe kidney. The most common type of renal fusion is the horseshoe kidney. A horseshoe kidney occurs when the inferior poles of the kidneys fuse across the midline. Normal ascent of the kidneys is arrested because the fused portion gets trapped behind the inferior mesenteric artery. Kidney rotation is also arrested so that the hilum faces ventrally. See Chapter 13, VIII.E.
- **13. A.** Tetralogy of Fallot. Tetralogy of Fallot (TF) is caused by an abnormal neural crest cell migration such that there is *skewed* development of the aorticopulmonary (AP) septum. TF results in a condition in which the pulmonary trunk obtains a small diameter while the aorta obtains a large diameter. TF is characterized by four classic malformations: pulmonary stenosis, <u>right ventricular hypertrophy</u>, <u>overriding aorta</u>, and a <u>ventricular septal defect</u> (VSD). Note the mnemonic PROVE. TF is associated clinically with marked cyanosis, in which the clinical consequences depend primarily on the severity of the pulmonary stenosis. See Chapter 5, III.B.4.
- 14. D. Down syndrome (trisomy 21) is characterized by moderate mental retardation (leading cause of inherited mental retardation), microcephaly, microphthalmia, colobomata, cataracts and glaucoma, flat nasal bridge, epicanthic folds, protruding tongue, simian crease in hand, increased nuchal skin folds, appearance of an "X" across the face when the baby cries as the upward-slanted palpebral fissures run in a line with the nasolabial folds, and congenital heart defects. Alzheimer neurofibrillary tangles and plaques are found in Down syndrome patients after 30 years of age. Acute megakaryocytic leukemia (AMKL) is frequently present. Trisomy 21 is the most common type of trisomy, and its frequency increases with advanced maternal age. Trisomy 21 is associated with low α -fetoprotein levels in amniotic fluid or maternal serum. A specific region on chromosome 21 seems to be markedly associated with numerous features of Trisomy 21. This region is called DSCR (Down syndrome critical region). The genes for the following have been mapped to the DSCR (although their role is far from clear): carbonyl reductase, SIM2 (a transcription factor), p60 subunit of chromatin assembly factor, holocarboxylase synthetase, ERG (a protooncogene), GIRK2 (a K^+ ion channel), and PEP19 (a Ca^{2+} -dependent signal transducer). Trisomy 21 may also be caused by a chromosomal translocation between chromosomes 14 and 21 [i.e., t(14;21)]. See Chapter 1, VI.A.
- **15. C.** Pregnancy. Amenorrhea can be primary or secondary. Primary amenorrhea is the complete absence of menstruation in a woman from puberty. The most common cause of primary amenorrhea is Turner syndrome. Secondary amenorrhea is the absence of menstruation for at least 3 months in a woman who previously had normal menstruation. Many factors can cause secondary amenorrhea, including stress, anorexia nervosa, elevated prolactin levels (e.g., prolactinoma or antipsychotic drug therapy), and pregnancy. Of these factors, only pregnancy is associated with a positive hCG test. See Chapter 22, I, and Chapter 4, V.B.
- **16. C.** Esophageal hiatal hernia. Esophageal hiatal hernia is a herniation of the stomach through the esophageal hiatus into the pleural cavity caused by an abnormally large

esophageal hiatus. An esophageal hiatal hernia renders the esophagogastric sphincter incompetent so that stomach contents reflux into the esophagus. Clinical signs in the newborn include vomiting (frequently projectile) when the infant is laid on its back after feeding. See Chapter 21, IV.B.

- **17. D.** Wilms tumor (WT). WT is the most common renal malignancy of childhood. WT presents as a large, solitary, well-circumscribed mass that on cut section is soft, homogeneous, and tan-gray in color. WT is interesting histologically, in that this tumor tends to recapitulate different stages of embryological formation of the kidney, so that three classic histological areas are described: a stromal area; a blastemal area of tightly packed embryonic cells; and a tubular area. Neuroblastoma is ruled out because there was no mention of an increase in urine vanillylmandelic acid (VMA) and metanephrine levels. See Chapter 13, VIII.I.
- **18. E.** Pheochromocytoma (PH). PH is a relatively rare neoplasm that contains both epinephrine and norepinephrine. PH occurs mainly in adults 40 to 60 years old and is generally found in the region of the adrenal gland, but it may be found in extrasuprarenal sites. PH is associated with persistent or paroxysmal hypertension, anxiety, tremor, profuse sweating, pallor, chest pain, and abdominal pain. Laboratory findings include increased urine VMA and metanephrine levels, inability to suppress catecholamines with clonidine, and hyperglycemia. PH is treated by surgery or phenoxybenzamine (an α -adrenergic antagonist). See Chapter 13, IX.C.2.
- **19.** A. Female pseudo-intersexuality (FP) occurs when an individual has only ovarian tissue histologically and masculinization of the female external genitalia. These individuals have a 46,XX genotype. FP is most often observed clinically in association with a condition in which the fetus produces an excess of androgens (e.g., congenital adrenal hyperplasia [CAH]). CAH is caused most commonly by mutations in genes for enzymes involved in adrenocortical steroid biosynthesis (e.g., 21-hydroxylase deficiency, 11β-hydroxylase deficiency). In 21-hydroxylase deficiency (90% of all cases), there is virtually no synthesis of cortisol or aldosterone, so that intermediates are funneled into androgen biosynthesis, thereby elevating androgen levels. The elevated levels of androgens lead to masculinization of a female fetus. FP produces the following clinical findings: mild clitoral enlargement, complete labioscrotal fusion with a phalloid organ, or macrogenitosomia (in the male fetus). Because cortisol cannot be synthesized, negative feedback to the adenohypophysis does not occur, so adrenocorticotropic hormone (ACTH) continues to stimulate the adrenal cortex, resulting in adrenal hyperplasia. Because aldosterone cannot be synthesized, the patient presents with hyponatremia ("salt-wasting") with accompanying dehydration and hyperkalemia. Treatment includes immediate infusion of intravenous saline and longterm steroid hormone replacement, both cortisol and mineralocorticoids (9α -fludrocortisone). Although Turner syndrome is also a cause of primary amenorrhea, individuals with Turner syndrome have a 45,XO genotype. A pituitary tumor can be excluded due to negative CT scan findings. See Chapter 15, VI.B.2.
- **20. E.** Hydrocele of the testes. Hydrocele of the testes occurs when a small patency of the processus vaginalis remains, so that peritoneal fluid can flow into the processus vaginalis, which results in a fluid-filled cyst near the testes. Peritoneal fluid drains from the abdomen through the tunica vaginalis. The fluid accumulates in the scrotum, becomes trapped, and causes the scrotum to enlarge. A hydrocele is usually harmless and in most cases resolves within a few months after birth. A hydrocele is normally treated only when there is discomfort or when the testicular blood supply is threatened. A hematocele could have also been considered, but a hematocele is typically due to trauma, and blood would have been seen on fluid collection. Inginual hernias usually accompany hydroceles, but there was no bulge detected on physical examination. See Chapter 15, VI.A.4.
- **21. C.** Bronchiectasis. Bronchiectasis is the abnormal, permanent dilation of bronchi due to chronic necrotizing infection (e.g., *Staphylococcus*, *Streptococcus*, *Haemophilus influenzae*), bronchial obstruction (e.g., foreign body, mucous plugs, or tumors), or congenital conditions (e.g., Kartagener syndrome, cystic fibrosis, immunodeficiency disorders). The

lower lobes of the lung are predominately affected, and the affected bronchi have a saccular appearance. Clinical signs include cough, fever, and expectoration of large amounts of foul-smelling purulent sputum. Bronchiectasis may also be classified to a group of disorders known as chronic obstructive pulmonary disease (COPD), which are characterized by increased resistance to airflow during both inspiration and expiration due to airway obstruction. Other members of COPD include emphysema, chronic bronchitis, and asthma. See Chapter 11, II.C.3d.

- **22. A.** DiGeorge syndrome (DS) is caused by a microdeletion in the long arm of chromosome 22 (22q11), which is also called the DiGeorge chromosomal region (DGCR). DS occurs when pharyngeal pouches 3 and 4 fail to differentiate into the thymus and parathyroid glands. DS is usually accompanied by facial anomalies resembling first arch syndrome (micrognathia, low-set ears) due to abnormal neural crest cell migration, cardiovascular anomalies due to abnormal neural crest cell migration during formation of the aorticopulmonary septum, immunodeficiency due to absence of thymus gland, and hypocalcemia due to absence of parathyroid glands. DS has a phenotypic and genotypic similarity to velocardiofacial syndrome (VCFS), that is, both DS and VCFS are manifestations of a microdeletion at 22q11. The genes for the following have been mapped to 22q11 or the DGCR (although their role is far from clear): catechol-*O*-methyltransferase (COMT; an enzyme used in catecholamine metabolism), GpIbb (receptor for von Willebrand factor), DGCR3 (a leucine zipper transcription factor), and citrate transport protein (CTP). See Chapter 12, VIII.I.
- 23. C. Rubella virus infection. Rubella virus (German measles; member of TORCH) belongs to the Togaviridae family, which are enveloped, icosahedral, positive, single-stranded RNA viruses. The rubella virus is transmitted to the fetus transplacentally. The risk of fetal rubella infection is greatest during the first month of pregnancy and apparently declines thereafter. Fetal rubella infection results in the classic triad of cardiac defects (e.g., patent ductus arteriosus, pulmonary artery stenosis, atrioventricular [AV] septal defects), cataracts, and low birth weight. With the pandemic of rubella in 1964, the complexity of this syndrome became apparent, and the term expanded rubella syndrome became standard. The clinical manifestations include intrauterine growth retardation (most common manifestation), hepatosplenomegaly, generalized adenopathy, hemolytic anemia, hepatitis, jaundice, meningoencephalitis, eye involvement (e.g., cataracts, glaucoma, retinopathy), bluish-purple lesions on a yellow, jaundiced skin ("blueberry muffin spots"), osteitis (celery stalk appearance of long bones), and sensorineural deafness. Exposure of pregnant women requires immediate assessment of their immune status. If the exposed pregnant woman is known to be immune (i.e., antibodies present), the woman can be assured of no risk. Postexposure prophylaxis of pregnant women with immune globulin (IG) is not recommended and should be considered only if abortion is not an option. Control measures for rubella prevention should be placed on immunization of children. Other members of TORCH include Toxoplasma gondii (a protozoan parasite), cytomegalovirus (CMV), herpes simplex virus, varicella zoster virus, Treponema pallidum (a spirochete), and hepatitis B virus. TORCH infections are caused by Toxoplasma (T), rubella (R), cytomegalovirus (C), herpes virus (H), and other (O) bacterial and viral infections that are grouped together because they cause similar clinical and pathological manifestations. See Chapter 23, II.A.1.
- **24. E.** Retinoblastoma. Retinoblastoma (RB) is a tumor of the retina that occurs in childhood and develops from precursor cells in the immature retina. The RB gene is located on chromosome 13q and encodes for RB protein, which binds to a gene regulatory protein and causes suppression of the cell cycle, that is, the RB gene is a tumor-suppressor gene (also called an anti-oncogene). A mutation in the RB gene will encode an abnormal RB protein such that there is no suppression of the cell cycle. This leads to the formation of RB. Hereditary RB causes multiple tumors in both eyes. Nonhereditary RB causes one tumor in one eye. See Chapter 9, III.M.
- **25. A.** Ehlers-Danlos syndrome. Ehlers-Danlos syndrome is an autosomal dominant genetic disorder involving the gene for peptidyl lysine hydroxylase, which is an enzyme necessary

282 BRS Embryology

for the hydroxylation of lysine residues of collagen. It affects mainly type I and type III collagen. It is characterized by extremely stretchable and fragile skin, hypermobile joints, aneurysms of blood vessels, and rupture of the bowel. See Chapter 16, I.C.4.

- **26. C.** Osteogenesis imperfecta. Osteogenesis Imperfecta (OI) is an autosomal dominant (types I and IV) or recessive (types II and III) genetic disorder caused by a mutation in the gene for type I collagen subunits on chromosome 7q22 or 17q22. OI is characterized by extreme bone fragility, with spontaneous fractures occurring when the fetus is still in the womb and blue sclera of the eye. Severe forms of OI are fatal in utero or during the early neonatal period. Milder forms of OI may be confused with child abuse. See Chapter 17, VII.C.
- **27. A.** Marfan syndrome. Marfan syndrome (MS) is an autosomal dominant genetic disorder caused by a mutation in the gene for the protein fibrillin-1 on chromosome 15q21.1, which is an essential component of elastic fibers. These individuals are unusually tall and have exceptionally long, thin limbs, ectopia lentis (dislocation of the lens), severe near-sightedness, and heart valve incompetence. See Chapter 17, VII.B.
- **28.** E. Duchenne muscular dystrophy. Duchenne muscular dystrophy (DMD). DMD is an X-linked recessive disorder caused by a mutation in the gene for dystrophin on the short arm of chromosome X (Xp21). X-linked recessive inheritance means that males who inherit only one defective copy of the DMD gene from the mother have the disease. Dystrophin anchors the cytoskeleton (actin) of skeletal muscle cells to the extracellular matrix through a transmembrane protein (α -dystroglycan and β -dystroglycan) and stabilizes the cell membrane. A mutation of the DMD gene destroys the ability of dystrophin to anchor actin to the extracellular matrix. The characteristic dysfunction in DMD is progressive muscle weakness and wasting. Death occurs as a result of cardiac or respiratory failure, usually in the late teens or 20s. The description of how the boy arose from a seated position is called the Gower maneuver, which is classically seen in Duchenne muscular dystrophy. Becker muscular dystrophy normally begins around the third decade of life, whereas Duchenne muscular dystrophy can begin much earlier. McArdle disease is excluded because there was no sign of myoglobinuria, which would be a result of muscle glycogen phosphorylase deficiency. See Chapter 18, IV.D.
- **29. A.** Alcohol consumption during pregnancy. Alcohol is an organic compound delivered to the fetus through recreational or addictive (i.e., alcoholism) drinking by pregnant women. This drug can cause fetal alcohol syndrome, which results in mental retardation, microcephaly, holoprosencephaly, limb deformities, craniofacial abnormalities (i.e., hypertelorism, smooth philtrum, short palpebral fissures, flat nasal bridge, maxillary (midface) hypoplasia, and a thin upper lip), and cardiovascular defects (i.e., ventricular septal defects). Fetal alcohol syndrome is the leading cause of preventable mental retardation. The threshold dose of alcohol has not been established, so "no alcohol is good alcohol" during pregnancy. See Chapter 23, V.M.
- **30. D.** Erythroblastosis fetalis. The Rh factor is clinically important in pregnancy. If the mother is Rh–, she will produce Rh antibodies if the fetus is Rh+. This situation will not affect the first pregnancy but will affect the second pregnancy with an Rh+ fetus. In the second pregnancy with an Rh+ fetus, a hemolytic condition of red blood cells (RBCs) occurs known as Rh-hemolytic disease of newborn (erythroblastosis fetalis). This causes destruction of fetal RBCs, which leads to the release of large amounts of bilirubin (a breakdown product of hemoglobin). This causes fetal brain damage due to a condition called kernicterus, which is a pathological deposition of bilirubin in the basal ganglia. Severe hemolytic disease in which the fetus is severely anemic and demonstrates total body edema (i.e., hydrops fetalis) may lead to death. In these cases, an intrauterine transfusion is indicated. Rh₀(D) immune globulin (RhoGAM, MICRhoGAM) is a human immunoglobulin (IgG) preparation that contains antibodies against Rh factor and prevents a maternal antibody response to Rh+ cells that may enter the maternal bloodstream of an Rh–mother. This drug is administered to Rh– mothers within 72 hours after the birth of an

Rh+ baby to prevent erythroblastosis fetalis during subsequent pregnancies. See Chapter 6, IX.O.

- 31. C. Patent ductus arteriosus. Patent ductus arteriosus occurs when the ductus arteriosus—a connection between the left pulmonary artery and aorta—fails to close. Normally the ductus arteriosus functionally closes within a few hours after birth via smooth muscle contraction to ultimately form the ligamentum arteriosum. A patent ductus arteriosus causes a left → right shunting of oxygen-rich blood from the aorta back into the pulmonary circulation. This can be treated with prostaglandin synthesis inhibitors (such as indomethacin), which promote closure. It is very common in premature infants and maternal rubella infection. Clinical signs include a harsh, machine-like, continuous murmur in the upper left parasternal area. See Chapter 5, IX.B.4.
- **32. C.** Tracheoesophageal fistula. Tracheoesophageal fistula is an abnormal communication between the trachea and esophagus that results from improper division of foregut by the tracheoesophageal septum. It is generally associated with esophageal atresia and polyhydramnios. Clinical features include excessive accumulation of saliva or mucus in the nose and mouth; episodes of gagging and cyanosis after swallowing milk; abdominal distention after crying; and reflux of gastric contents into lungs, causing pneumonitis. Diagnostic features include inability to pass a catheter into the stomach and radiographs demonstrating air in the infant's stomach. See Chapter 11, II.B.2.
- **33. A.** Postductal coarctation of the aorta. Postductal coarctation of the aorta occurs when the aorta is abnormally constricted distal to the origin of the left subclavian artery and inferior to the ductus arteriosus. Congenital coarctation reveals tunica intima hyperplasia and tunica media thickening that forms a posterolateral ridge that encircles the aortic lumen. Symptoms may occur in the neonatal period when the patent ductus arteriosus and the patent foramen ovale close, so that the entire cardiac output to the lower extremity must cross the narrowed aortic segment. See Chapter 5, IX.B.5.
- **34. D.** A thyroglossal duct cyst occurs when parts of the thyroglossal duct persist and thereby form a cyst. These cysts can be present anywhere along the line of descent in fetal development of the thyroid gland, from the foramen cecum at the base of the tongue to the level of the thyroid gland. There are four types of thyroglossal duct cysts: thyrohyoid cysts (61% of cases), suprahyoid cysts (24%), suprasternal cysts (13%), and intralingual cysts (2%). See Chapter 12, VIII.E.
- **35. E.** A congenital diaphragmatic hernia is a herniation of abdominal contents into the pleural cavity caused by a failure of the pleuroperitoneal membrane to develop or fuse with other components of the diaphragm. Affected neonates usually present in the first few hours of life with respiratory distress that may be mild or so severe as to be incompatible with life. See Chapter 21, IV.A.

CHAPTER 2

Figure 2.1. From Dudek R, Fix J. *High-Yield Embryology*. Baltimore: Williams & Wilkins, 1996:5.

CHAPTER 3

Figure 3.1. (E) From Sauerbrei EE, Nguyen KT, Nolan RL. *A Practical Guide to Ultrasound in Obstetrics and Gynecology.* 2nd Ed. Philadelphia: Lippincott Williams &Wilkins, 1998:115.

Figure 3.2. From Sternberg SS. *Diagnostic Surgical Pathology*, Vol. 2, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:2070.

Figure 3.3. (A) From Sternberg SS. Diagnostic Surgical Pathology, Vol. 2, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:2078.
(B) From Sternberg SS. Diagnostic Surgical Pathology, Vol. 2, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:2077.

CHAPTER 4

Figure 4.1. From Dudek RW. *High-Yield Embryology*. Baltimore: Williams & Wilkins, 1996:9.

Figure 4.2. (A, B) From Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams & Wilkins, 1988:79. (C) From Sadler TW. *Langman's Medical Embryology*, 7th Ed. Baltimore: Williams & Wilkins, 1995:77.

Figure 4.4. From Sadler TW. *Langman's Medical Embryology*, 7th Ed. Baltimore: Williams & Wilkins, 1995:62.

Figure 4.5. From Sadler TW. *Langman's Medical Embryology*, 7th Ed. Baltimore: Williams & Wilkins, 1995:61.

CHAPTER 5

Figure 5.2. (Table) From Dudek RW. *High-Yield Embryology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2001:27. (**B**, **C**) From Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams & Wilkins, 1988:147. (**D**) From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:591.

Figure 5.4. From Avery GB, Fletcher MA, MacDonald MG. *Neonatology Pathophysiology and Management of the Newborn*, 5th Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:602.

Figure 5.5. From Donnelly LF, Higgin CB. MR imaging of conotruncal abnormalities. *Am J Roentgenol* 1996;166:925. Reprinted with permission from the *American Journal of Roentgenology*.

Figure 5.6. From Fletcher MA, MacDonald MG. *Neonatology Pathophysiology and Management of the Newborn*, 5th Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:605.

Figure 5.7. From Bisset GS III. Magnetic resonance imaging of the pediatric cardiovascular system. In: Cohen MD, Edwards MK, eds. *Pediatrics Magnetic Resonance Imaging*. Philadelphia: BC Decker, 1990:541–548.

Figure 5.8. Modified from Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams & Wilkins, 1988:149.

Figure 5.9. (B) From McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:1349.

Figure 5.13. (B) From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:553.

Figure 5.15. (B) From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:553.

Figure 5.17. (B) From McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:1356.

Figure 5.18. (A, B) From Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams & Wilkins, 1988:154. **(D1)** From McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:1369.

Figure 5.19. (A–C) Modified from Johnson KE. *NMS Human Developmental Anatomy.* Baltimore: Williams & Wilkins, 1988:159.

CHAPTER 6

Figure 6.1. (B–D left part only) From Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams & Wilkins, 1988:96.

Figure 6.2. (D, E) From Sadler TW. *Langman's Medical Embryology*, 7th Ed. Baltimore: Williams & Wilkins, 1995:108. (Sonogram in A) From Sauerbrei EE. *A Practical Guide to Ultrasound in Obstetrics and Gynecology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:116.

Figure 6.3. (C) From Gartner LP, Hiatt JL. Color Atlas of Histology, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 2006:365.
(D) From Thornberg KL, Faber JJ. Placental Physiology. New York: Raven Press, 1983:19.
(E) From Dudek R. High-Yield Embryology, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:21.

Figure 6.4. From Sternberg SS. *Histology for Pathologists*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:967.

Figure 6.5. From Dudek RW. *High-Yield Embryology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:24.

Figure 6.6. (A–C) From Dudek RW. *High-Yield Embryology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:8. (A1) From Dudek RW. *High-Yield Embryology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:20. (A2) Courtesy of Dr. R. W. Dudek. (B1) From Dudek RW. *High-Yield Embryology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:20. (B2) Courtesy of Dr. R. W. Dudek. (C1) From Sadler TW. *Langman's Medical Embryology*, 6th Ed. Baltimore: Williams & Wilkins, 1990:156.

Figure 6.7. From Sternberg SS. *Diagnostic Surgical Pathology*, Vol. 2, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:2091.

Figure 6.8. From Sternberg SS. *Diagnostic Surgical Pathology*, Vol. 2. 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:2089.

Figure 6.9. From Fletcher, MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott-Raven, 1997:85.

Figure 6.10. From Benirschke K, Kaufmann P. The Pathology of the Human Placenta, 3rd Ed. New York: Springer-Verlag, 1995. With kind permission of Springer Science+Business Media.

CHAPTER 7

Figure 7.1. (A, C, E) Modified from Truex RC, Carpenter MB. *Human Neuroanatomy*. Baltimore, Williams & Wilkins, 1969:91. (B, D, F) From Carpenter MB, Sutin J. *Human Neuroanatomy*, 8th Ed., Baltimore: Lippincott Williams & Wilkins, 1983:63. **Figure 7.2.** From Spitz JL. *Genodermatoses: A Full Color Clinical Guide to Genetic Skin Disorders.* Baltimore: Lippincott Williams & Wilkins, 1996:76. Courtesy of Lawrence Gordon, MD.

Figure 7.3. From Gold DH, Weingeist TA, eds. *Color Atlas of the Eye in Systemic Diagnosis.* Philadelphia: Lippincott Williams & Wilkins, 2001:499.

Figure 7.4. Modified from Johnson KE. *NMS Human Developmental Anatomy.*, Baltimore: Lippincott Williams & Wilkins, 1988:177.

Figures 7.5, 7.6, 7.10. From Cormack DH. *Essential Histology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2001:221.

Figure 7.17. From Fix J. *BRS Neuroanatomy*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 2008:70.

Figure 7.18. From Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams & Wilkins, 1988:181.

Figure 7.19. Redrawn from Larsen WJ. *Human Embryology*, 2nd Ed. New York: Churchill Livingston, 1997:439.

Figure 7.20. Modified from Haines DE. *Fundamental Neuroscience*. New York: Churchill Livingston, 1997:69.

Figure 7.21. From Haines DE. *Fundamental Neuroscience*. New York: Churchill Livingston, 1997:69. Copyright Elsevier.

Figure 7.22. Courtesy of Dr. T. Naidich, Miami, FL. Figure 7.23. From Papp Z. *Atlas of Fetal Diagnosis*. Amsterdam, Netherlands: Elsevier, 1992:128.

Figure 7.24. From Haines DE. *Fundamental Neuroscience*. New York: Churchill Livingston, 1997:68. Copyright Elsevier.

Figure 7.25. From Carlson BM. *Human Embryology and Developmental Biology*, 2nd Ed. St. Louis: Mosby, 1999:244.

Figure 7.26. From Haines DE. *Fundamental Neuroscience*. New York: Churchill Livingston, 1997:69.

Figure 7.27. From Dudek RW. *High-Yield Embryology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2001:76.

Figure 7.28. From Swischuk LE. *Imaging of the Newborn, Infant, and Young Child*, 5th Ed. Philadelphia: Lippincott Williams & Wilkins, 2004:1016.

Figure 7.29. From Swischuk LE. *Imaging of the Newborn, Infant, and Young Child,* 5th Ed. Philadelphia: Lippincott Williams & Wilkins, 2004:1017.

Figure 7.30. From Siegel MJ. *Pediatric Sonography*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 2001:111.

Figure 7.31. From Siegel MJ. *Pediatric Sonography*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 2001:92.

Figure 7.32. From Siegel MJ. *Pediatric Sonography*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 2001:103.

Figure 7.33. From Swischuk LE. *Imaging of the Newborn, Infant, and Young Child,* 5th Ed. Philadelphia: Lippincott Williams & Wilkins, 2004:1018.

Figure 7.34. From Siegel MJ. *Pediatric Sonography*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 2001:102.

Figure 7.35. From Siegel MJ. *Pediatric Sonography*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 2001:97.

Figure 7.36. Courtesy of Dr. James E. Rytting.

CHAPTER 8

Figure 8.1. (C) Redrawn from Moore KL, Persaud TVN. *The Developing Human*, 6th Ed. Philadelphia: WB Saunders, 1998:505. (E) From Rohen JW, Yokochi C, Lütjen-Drecoll E. *Color Atlas of Anatomy*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:124.

Figure 8.2. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1998:285.

Figure 8.3. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1998:288.

Figure 8.4. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1998:289.

Figure 8.5. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1998:294.

Figure 8.6. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1998:295.

Figure 8.7. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1998:292.

Figure 8.8. From Sternberg SS. *Diagnostic Surgical Pathology*, Vol. 1, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:963.

Figure 8.9. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1998:296.

CHAPTER 9

Figure 9.3. From Tasman W, Jaeger EA. *Wills Eye Hospital Atlas of Clinical Ophthalmology*. Philadelphia: Lippincott-Raven, 1996.

Figure 9.4. From Gilbert-Barness E. *Potter's Atlas of Fetal and Infant Pathology*. St. Louis, Mosby, 1998:366, 370. Copyright Elsevier.

Figure 9.5. From Tasman W, Jaeger EA. *The Wills Eye Hospital Atlas of Clinical Ophthalmology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2001.

Figure 9.6. From Gilbert-Barness E. *Potter's Atlas of Fetal and Infant Pathology*. St. Louis, Mosby, 1998:366, 370. Copyright Elsevier.

Figure 9.7. From Avery GB. *Neonatology: Pathophysiology and Management of the Newborn*, 5th Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:1286.

Figure 9.8. From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:205.

Figure 9.9. From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:211.

CHAPTER 10

Figure 10.1. From Dudek R. *High-Yield Embryology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:35.

Figure 10.2. From Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, et al., eds. *Gastrointestinal Pathology: An Atlas and Text*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:33.

Figure 10.3. From Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, et al., eds. *Gastrointestinal Pathology: An Atlas and Text*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:37.

Figure 10.4. From Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, et al., eds. *Gastrointestinal Pathology: An Atlas and Text*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:36.

Figure 10.5. From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:1189.

Figure 10.6. From Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, et al., eds. *Gastrointestinal Pathology: An Atlas and Text*, 2nd Ed. Baltimore: Lippincott Williams & Wilkins, 1999:624. Figure 10.7. From Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams & Wilkins, 1988:211.

Figure 10.8. From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:1337.

Figure 10.9. From Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams & Wilkins, 1988:215.

Figure 10.10. From Lindner H. Embryology and anatomy of the biliary tree. In: Way LW. *Surgery of the Gallbladder and Bile Ducts*. Philadelphia: WB Saunders, 1987.

Figure 10.11. From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:2250.

Figure 10.12. From Lindner H. Embryology and anatomy of the biliary tree. In: Way LW. *Surgery of the Gallbladder and Bile Ducts*. Philadelphia: WB Saunders, 1987.

Figure 10.13. Redrawn and modified from Cubilla AL, Fitzgerald PJ. Tumors of the exocrine pancreas. In: Hartman WH, Sobin LH, eds. *Atlas of Tumor Pathology*, 2nd Ed. Washington, DC: Armed Forces Institute of Pathology, 1984.

Figure 10.14. (A) Redrawn and modified from Cubilla AL, Fitzgerald PJ. Tumors of the exocrine pancreas. In: Hartman WH, Sobin LH, eds. *Atlas of Tumor Pathology*, 2nd Ed. Washington, DC: Armed Forces Institute of Pathology, 1984. (B) From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:2118. Courtesy of Peter B. Cotton, MD, Durham, NC.

Figure 10.15. From Misiewicz JJ, Bartram CI. *Atlas of Clinical Gastroenterology*. London, Gower Medical Publishing, 1987.

Figure 10.16. From Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams & Wilkins, 1988:218.

Figure 10.17. From Sadler TW. *Langman's Medical Embryology*, 8th Ed. Baltimore: Lippincott Williams & Wilkins, 2000:294.

Figure 10.18. From Sadler TW. *Langman's Medical Embryology*, 8th Ed. Baltimore: Lippincott Williams & Wilkins, 2000:294. Courtesy of Dr. S. Lacey, Department of Surgery, University of North Carolina.

Figure 10.19. From Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, et al., eds.

Gastrointestinal Pathology: An Atlas and Text, 2nd Ed. Baltimore: Lippincott Williams & Wilkins, 1999:321.

Figure 10.20. From Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, et al., eds. *Gastrointestinal Pathology: An Atlas and Text*, 2nd Ed. Baltimore: Lippincott Williams & Wilkins, 1999:310.

Figure 10.21. From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:259.

Figure 10.22. From Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, et al., eds. *Gastrointestinal Pathology: An Atlas and Text*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:315. (inset) From Smith GH, Glasson M. Intestinal atresia: factors affecting survival. *Aust N Z J Surg* 1989;59:151.

Figure 10.23. From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:259. (Inset) From Smith GH, Glasson M. Intestinal atresia: factors affecting survival. *Aust N Z J Surg* 1989;59:151.

Figure 10.24. From Sadler TW. *Langman's Embryology*, 10th Ed. Philadelphia: Lippincott Williams & Wilkins, 2006:224.

Figure 10.25. From Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, et al., eds. *Gastrointestinal Pathology: An Atlas and Text*, 2nd Ed. Baltimore: Lippincott Williams & Wilkins, 1999:318. (Inset) From Fenoglio-Preiser CM, Noffsinger AE, Stemmermann GN, et al., eds. *Gastrointestinal Pathology: An Atlas and Text*, 2nd Ed. Baltimore: Lippincott Williams & Wilkins, 1999:318.

Figure 10.26. (line drawings) From Sadler TW. Langman's Medical Embryology, 8th Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:299. (Photo) From Sternberg SS. Histology for Pathologists, 2nd Ed. Philadelphia: Lippincott-Raven, 1997:554.

Figure 10.27. From Swischuk LE. *Imaging of the Newborn, Infant, and Young Child,* 5th Ed. Philadelphia: Lippincott Williams & Wilkins, 2004:448.

Figure 10.28. From Larsen WJ. *Human Embryology*, 2nd Ed. New York: Churchill Livingstone, 1997:268. Copyright Elsevier.

Figure 10.29. From Larsen WJ. *Human Embryology*, 2nd Ed. New York: Churchill Livingstone, 1997:268. Figure 10.30. From Larsen WJ. *Human Embryology*, 2nd Ed. New York: Churchill Livingstone, 1997:268.

CHAPTER 11

Figure 11.1. (bottom) From Dudek R. *High-Yield Embryology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:56.

Figure 11.2. (A) From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:1186. **(B)** From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:845.

Figure 11.3. From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:1186.

Figure 11.4. (A) From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:1186. (B) From Avery GB. Neonatology Pathophysiology and Management of the Newborn, 5th Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:1018.

Figure 11.5. From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:1186.

Figure 11.6. From Yamada T, Alpers DH, Laine L, et al., eds. *Textbook of Gastroenterology*, Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 1999:1186.

Figure 11.7. From Rohen JW, Yokochi C, Lütjen-Drecoll E. *Color Atlas of Anatomy*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:235.

Figure 11.8. From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:671.

Figure 11.9. From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:674.

Figure 11.10. (Left) Modified from Rohen JW, Yokochi C, Lütjen-Drecoll E. *Color Atlas of Anatomy*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:235. (**Right**) Redrawn from Sweeney LJ. *Basic Concepts in*

Embryology. New York: McGraw-Hill, 1998:321. **Figure 11.11. (Left)** Modified from Rohen JW, Yokochi C, Lütjen-Drecoll E. *Color Atlas of*

Anatomy, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:235. (**Right**) Redrawn from Sweeney LJ. *Basic Concepts in* *Embryology*. New York: McGraw-Hill, 1998:321.

Figure 11.12. (Left) Modified from Rohen JW, Yokochi C, Lütjen-Drecoll E. *Color Atlas of Anatomy*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:235. (**Right**) Redrawn from Sweeney LJ. *Basic Concepts in Embryology*. New York: McGraw-Hill, 1998:321.

Figure 11.13. (Left) Modified from Rohen JW, Yokochi C, Lütjen-Drecoll E. *Color Atlas of Anatomy*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:235. (**Right**) From Gartner LP, Hiatt JL. *Color Atlas of Histology*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 2006:253.

Figure 11.14. (A) From Dudek RW. *High-Yield Embryology*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:59. **(B)** From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:695.

CHAPTER 12

Figure 12.4. From Sadler TW. *Langman's Medical Embryology*, 9th Ed. Philadelphia: Lippincott Williams & Wilkins, 2004:391–393.

Figure 12.5. From McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:394.

Figure 12.6. From Moore KL. *The Developing Human*, 6th Ed. Philadelphia: WB Saunders, 1998:228. Copyright Elsevier.

Figure 12.7. Courtesy of Dr. A. Shaw, Department of Surgery, University of Virginia.

Figure 12.8. From Laeung AKC. Ectopic thyroid gland simulating a thyroglossal duct cyst. *Can J Surg* 1995;38:87.

Figure 12.9. (A) From Fletcher A. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1997:225.
(B) From Kirks DW. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:246.

Figure 12.10. From Bickley LS, Szilagyi P. *Bates' Guide to Physical Examination and History Taking*, 8th Ed. Philadelphia: Lippincott Williams & Wilkins, 2003.

Figure 12.11. Courtesy of Dr. M. Edgerton, Department of Plastic Surgery, University of Virginia.

CHAPTER 13

Figure 13.4. (A) From Johnson KE. *NMS Human Developmental Anatomy*. Baltimore: Williams &

Wilkins, 1988:269. (C) Redrawn from Stevenson RE. *Human Malformation and Related Anomalies*. New York: Oxford University Press, 1993.

Figure 13.5. (A) From Stevenson RE. *Human Malformation and Related Anomalies*. New York: Oxford University Press, 1993. (B) From Kirks DW. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:1091.

Figure 13.6. From Kirks DW. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:1038.

Figure 13.7. (A) From Kelalis PP, King LR. *Clinical Pediatric Urology*, Vol. 2. Philadelphia: WB Saunders, 1976:210. (B) From Kirks DW. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:1050.

Figure 13.8. (A) From Papp Z. *Atlas of Fetal Diagnosis*. New York: Elsevier, 1992:178. (B) Courtesy of Dr. R. W. Dudek.

Figure 13.9. (A) From Sternberg SS. *Diagnostic Surgical Pathology*, Vol. 2, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:1827. (B) Courtesy of Dr. R. W. Dudek.

Figure 13.10. From Belman AB. The clinical significance of vesicoureteral reflux. *Pediatr Clin North Am* 1976;23:707.

Figure 13.11. From Malek RS, Kelalis PP. Simple and ectopic ureterocele in infancy and childhood. *Surg Gynecol Obstet* 1972;134:611.

Figure 13.13. (A) From Sternberg SS. *Diagnostic Surgical Pathology*, Vol. 1, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:609. (B) Courtesy of Dr. R. W. Dudeck.

Figure 13.14. (A) From DeLellis RA. Diseases of the adrenal glands. In: Murphy WM. *Urological Pathology*. Philadelphia: WB Saunders, 1997: 539–584. (B) From Sternberg SS. *Diagnostic Surgical Pathology*, Vol. 1, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:616.

Figure 13.15. From Wilkins L. *The Diagnosis and Treatment of Endocrine Disorders in Childhood and Adolescence*, 3rd Ed. 1965:439. Courtesy of Charles C Thomas Publisher, Ltd., Springfield, Illinois.

CHAPTER 14

Figure 14.1. Courtesy of Dr. R.W. Dudek.

Figure 14.2. (A–C) Modified from Shakzkes DR, Haller JO. Imaging of Uterovaginal Anomalies in the Pediatric Population. *Urol Radiol* 1991;13:58; and Markham SM, Waterhouse TB. Structural anomalies of the reproductive tract. *Curr Opin Obstet Gynecol* 1992;4:867. **Figure 14.3**. From Janovski NA. *Ovarian Tumors*, Vol. 4. Major Problems in Obstetrics and Gynecology. Philadelphia: WB Saunders, 1973:191.

Figure 14.4. (C) From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1998:179.
(D) From Sternberg SS. *Histology for Pathologists*, 2nd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:852.

Figures 14.5, 14.6 (A–D), 14.7 (A, B), 14.8 (A, B), 14.9, 14.10 (A). From Emans SJ, Laufer MR, Goldstein DP. *Pediatric and Adolescent Gynecology*, 4th Ed. Philadelphia: Lippincott-Raven, 1998:322–331. Originally adapted from American Fertility Society. The American Fertility Society classifications of adnexal adhesion, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, Müllerian anomalies, and intrauterine adhesions. *Fertil Steril* 1988;49(6):944. Reprinted by permission from the American Society for Reproductive Medicine.

Figure 14.6 (Photo). From Fleischer AC, Javitt MC, Jeffrey RB, et al. *Clinical Gynecologic Imaging*. Philadelphia: Lippincott-Raven, 1997:304.

Figure 14.7 (Photos), 14.8 (Photo), 14.10 (Lower photo). Courtesy of Dr. A. Gerbie. From Spitzer IB, Rebar RW. Counseling for women with medical problems: ovary and reproductive organs. In: Hollingsworth D, Resnik R, eds. *Medical Counseling before Pregnancy*. New York: Churchill Livingstone, 1988:216.

Figure 14.10 (Upper photo). From Gidwani G, Falcone T. Congenital Malformations of the Female Genital Tract: Diagnosis and Management. Philadelphia: Lippincott Williams & Wilkins, 1999:81.

Figure 14.11. (A, B) From Pokorny SF. Configuration of the Prepubertal Hymen. Am J Obstet Gynecol 1987;157:950. (B1) From Emans SJ, Laufer MR, Goldstein DP. Pediatric and Adolescent Gynecology, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:9. (C) From Emans SJ, Laufer MR, Goldstein DP. Pediatric and Adolescent Gynecology, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:9. (C1) From Emans SJ, Laufer MR, Goldstein DP. Pediatric and Adolescent Gynecology, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:9. (D, E) From Goldstein DP, Iaufer MR, Davis AF. Gynecologic Surgery in Children and Adolescents: A Text Atlas. New York: Springer-Verlag. (F) From Emans SJ, Laufer MR, Goldstein DP. Pediatric and Adolescent Gynecology, 4th Ed.

Philadelphia: Lippincott Williams & Wilkins, 1998:11. **(F1)** From Emans SJ, Laufer MR, Goldstein DP. *Pediatric and Adolescent Gynecology*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:11. **(G)** From Emans SJ, Laufer MR, Goldstein DP. *Pediatric and Adolescent Gynecology*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:11. **(G1)** From Emans SJ, Laufer MR, Goldstein DP. *Pediatric and Adolescent Gynecology*, 4th Ed. Philadelphia: Lippincott Williams & Wilkins, 1998:11.

CHAPTER 15

Figure 15.1. (D) From Trainer TD. Testis and excretory duct system. In: Mills SE, ed. *Histology for Pathologists*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 2007:951.

Figure 15.2. (A–C) Modified from Shakzkes DR, Haller JO. Imaging of uterovaginal anomalies in the pediatric population. *Urol Radiol* 1991;13:58; and Markham SM, Waterhouse TB. Structural anomalies of the reproductive tract. *Curr Opin Obstet Gynecol* 1992;4:867.

Figure 15.4. (A) From Gilbert-Barness E. *Potter's Atlas of Fetal and Infant Pathology*. St. Louis: Mosby, 1998:294. Copyright Elsevier.

(B) Courtesy of Dr. T. Ernesto Figuero.

Figure 15.5, 15.6. From Gilbert-Barness E. *Potter's Atlas of Fetal and Infant Pathology*. St. Louis: Mosby, 1998:294.

Figure 15.7. Courtesy of Dr. T. Ernesto Figuero.

Figure 15.8. Courtesy of Dr. J. Kitchin, Department of Obstetrics and Gynecology, University of Virginia.

Figure 15.9. From Warkany J. *Congenital Malformations: Notes and Comments.* Chicago: Year Book Medical Publishers, 1971:337. Copyright Elsevier.

Figure 15.10. From Jones HW, Scott WW. *Hermaphroditism, Genital Anomalies and Related Endocrine Disorders*. Baltimore: Williams & Wilkins, 1958.

CHAPTER 16

Figure 16.1. Reprinted from Pehamberger H, Honigsmann H, Wolff K. Dysplastic nevus syndrome with multiple primary amelanotic melanomas in oculocutaneous albinism. *J Am Acad Dermatol* 1984;11:731, with permission from Elsevier.

Figure 16.2. Courtesy of the Department of Dermatology, Columbia University, New York, NY.

Figure 16.3. Courtesy of Ingrid Winship, MBChB, MD, Cape Town, South Africa.

Figure 16.4. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1997:130.

Figure 16.5. (A) From Bernice R, Karachi ND, Toronto, Canada, from Mallory SB. What syndrome is this? Ehlers-Danlos syndrome. *Pediatr Dermatol* 1991;8:348. (**B**) From Bernice R, Karachi ND, Toronto, Canada, from Mallory SB. What syndrome is this? Ehlers-Danlos syndrome. *Pediatr Dermatol* 1991;8:348.

Figure 16.6. Reprinted from Reese V, Frieden IJ, Paller AS, et al. Association of facial hemangiomas with Dandy-Walker and other posterior fossa malformations. *J Pediatr* 1993; 122:379, with permission from Elsevier.

Figure 16.7. (A) Courtesy of Gilles G. Lestringang, MD, Abu Dhabi, United Arab Emirates. **(B)** From Sternberg SS. *Diagnostic Surgical Pathology*, Vol. 1, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:24.

Figure 16.8. From Junqueira LC, Carneiro J. *Basic Histology*, 9th Ed. Stamford, CT: Appleton & Lange, 1998:335.

Figure 16.9. Courtesy of Dr. Antoine Petit, Argenteuil, France.

Figure 16.10. Courtesy of Peter H. Itin, MD, Basel, Switzerland.

Figure 16.11. Courtesy of Marc E. Grossman, New York, NY.

Figure 16.12. From Spitz JL. *Genodermatoses*. Baltimore: Williams & Wilkins, 1996:241.

Figure 16.13. Courtesy of Paulus T. V. M. de Jong, MD, Rotterdam, the Netherlands.

Figure 16.14. Adapted from Grumback MM, Styne DM. Puberty: Ontogeny, neuroendocrinology, physiology, and disorders. In: Wilson JD, Foster DW, eds. *Williams Textbook of Endocrinology*, 8th Ed. Philadelphia: WB Saunders, 1992; and Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. *Arch Dis Child* 1969;44:291.

Figure 16.15. Reprinted from McKusick VA, Abbey H, Bannerman RM, et al. Medical genetics. *J Chronic Dis* 1959;12:1, with permission from Elsevier.

Figure 16.16. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1997:330.

Figure 16.17. Courtesy of George E. Giffor, MD, Children's Hospital, Boston, MA.

Figure 16.18. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1997:330.

Figure 16.20. Redrawn from Avery JK. *Oral Development and Histology*, 2nd Ed. New York: Thieme Medical Publishers, 2002:131, 133.

Figure 16.21. Redrawn from Avery JK. *Oral Development and Histology*, 2nd Ed. New York: Thieme Medical Publishers, 2002:131, 133.

Figure 16.22. Redrawn from McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:645.

CHAPTER 17

Figure 17.1. (B) Redrawn from *Gray's Anatomy: The Anatomical Basis of Medicine and Surgery,* 38th Ed. Edinburgh: Churchill Livingstone, 1995:372. (C) Modified from Sadler TW. *Langman's Medical Embryology,* 8th Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:164.

Figure 17.2. From Sadler TW. *Langman's Medical Embryology*, 8th Ed. Philadelphia: Lippincott Williams & Wilkins, 2000:169.

Figure 17.3. From McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:396.

Figure 17.4. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1997:188.

Figure 17.5. From McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:398.

Figure 17.6. Courtesy of M. M. Cohen, Jr., Halifax, Nova Scotia, Canada.

Figure 17.7. Courtesy of M. M. Cohen, Jr., Halifax, Nova Scotia, Canada.

Figure 17.8. From McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999.

Figure 17.9. (B) Redrawn from Larsen WJ. Human Embryology, 2nd Ed. New York: Churchill Livingston, 1997:77.

Figure 17.10. From Esses SI. *Textbook of Spinal Disorders*. Philadelphia: Lippincott, 1995:44.

Figure 17.11. From Kirks DR. *Practical Pediatric Imaging*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1997:314.

Figure 17.14. From Esses SI. *Textbook of Spinal Disorders*. Philadelphia: Lippincott, 1995:259.

Figure 17.15. From Jinkins JR. *Neurodiagnostic Imaging*. Philadelphia: Lippincott Williams & Wilkins, 1997:69.

Figure 17.17. Courtesy of Derek C. Harwood-Nash, MD, Toronto, Ontario, Canada.

Figure 17.18. From McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:2118.

Figure 17.19. From McKusick VA. *Heritable Disorders of Connective Tissue*, 4th Ed. St. Louis: CV Mosby, 1972:758. Copyright Elsevier.

Figure 17.20. From McKusick VA. *Heritable Disorders of Connective Tissue*, 4th Ed. St. Louis: CV Mosby, 1972:67. Copyright Elsevier.

Figure 17.21. From McMillan JA, DeAngelis CD, Feigin RD, et al., eds. *Oski's Pediatrics*, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:2149.

Figure 17.22. From Kaufman CE. *Essentials of Pathophysiology*. Philadelphia: Lippincott Williams & Wilkins, 1996:261. Used with permission of the patient.

CHAPTER 18

Figures 18.2, 18.3. From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1997:309, 355.

Figure 18.4. From Avery GB. *Neonatology: Pathophysiology and Management of the Newborn*, 5th Ed. Philadelphia: Lippincott Williams & Wilkins, 1999:1271.

Figure 18.5. Reprinted from Nicholson LV, Davison K, Johnson MA, et al. Dystrophin in skeletal muscle II. Immunoreactivity in patients with Xp21 muscular dystrophy. *J Neurol Sci* 1989;94:137, with permission from Elsevier.

CHAPTER 19

Figures 19.5B, 19.6B. From Keats TE, Smith TH. *Atlas of Normal Developmental Roentgen Anatomy*, 2nd Ed. Chicago: Year Book Medical Publishers, 1977:33, 292, 295. Copyright Elsevier.

CHAPTER 20

Figures 20.5B, 20.6B. From Keats TE, Smith TH. *Atlas of Normal Developmental Roentgen Anatomy,* 2nd Ed. Chicago: Year Book Medical Publishers, 1977:31, 237, 289. Copyright Elsevier.

CHAPTER 21

Figure 21.2A. From Gilbert-Barness E. *Potter's Atlas of Fetal and Infant Pathology.* St. Louis: Mosby, 1998:172. Copyright Elsevier. **Figure 21.2B**. From Aladjen S, Vidyasagar D. *Atlas of Perinatology*. Philadelphia: WB Saunders, 1982:295, 375.

Figure 21.3. From Fenoglio-Preiser CM. *Gastrointestinal Pathology: An Atlas and Text,* 2nd Ed. Philadelphia: Lippincott, Williams & Wilkins, 1998:43.

CHAPTER 23

Figure 23.1. (A) From Fletcher MA. *Physical Diagnosis in Neonatology*. Philadelphia: Lippincott Williams & Wilkins, 1997:133. (B) Courtesy of Dr. George H. McCracken, Jr., Dallas, Texas.

Figure 23.2. (A) From Avery GB. *Neonatology: Pathophysiology and Management of the*

Newborn, 5th Ed. Philadelphia: Lippincott
Williams & Wilkins, 1999:1293. (B) From
McMillan JA, DeAngelis CD, Feigin RD, et al., eds. Oski's Pediatrics, 3rd Ed. Philadelphia:
Lippincott Williams & Wilkins, 1999:687.
(C) Courtesy of Dr. George H. McCracken, Jr., Dallas, Texas. (D) Courtesy of Dr. Guido
Currarinao, Dallas, Texas. (E) From Avery GB.
Neonatology: Pathophysiology and Management of the Newborn, 5th Ed. Philadelphia: Lippincott
Williams & Wilkins, 1999:1154. (F) From Avery
GB. Neonatology: Pathophysiology and Management of the Newborn, 5th Ed.
Philadelphia: Lippincott Williams & Wilkins, 1999:1136.

Page numbers followed by f denote figure; those followed by t denote table.

Abducent nerve (CN VI), 85 Abducent nucleus, 80 Abductor musculature, lower limb, 238 Abetalipoproteinemia, 111 Abnormal origin of subclavian artery, 47 Accessory nerve (CN XI), 85 Accessory pancreatic duct, 122, 122f Achalasia, 118, 118f Achondroplasia, 6 Acoustic neuroma, 73 Acrosin, 12 Acrosome reaction, 12 Adductor musculature, lower limb, 238 Adenohypophysis, 82, 82f Adventitia, GI tract, 11, 115 Aeration, at birth, 140 Alar plate, 77, 78f Alar plate sensory neuroblasts, 78-80, 79f, 80f Alcohol, effects on fetus, 262 Allantois, 60, 158f, 159 Allocortex, 83 Alobar prosencephaly, 92 α -1-antitrypsin (AAT), 21t α,β,γ -crystallin, 109 α-fetoprotein (AFP), 21t, 66 in neural tube defects, 86, 252 in omphalocele, 124 α-thalassemia, 31 Alpha cells, pancreatic, 121 Alprazolam, 263 Alveolar period, 140, 140f Ambiguous genitalia, 188 Amikacin, 262 Aminopterin, 261 Amniocentesis, 250–252 Amniotic band syndrome, 65, 65f Amniotic fluid, 62 Amniotic fluid index (AFI), 61 Amniotic fluid volume (AFV), 61 Ampulla of uterine tube, ectopic pregnancy in, 14 Ampulla of Vater, hepatopancreatic, 122 Anal agenesis, 130 Anal canal, 128f, 130 clinical considerations in anal agenesis, 130 anorectal agenesis, 130 imperforate anus, 130 rectal atresia, 130 development of, 128f, 130 sources of, 130 Anal canal, upper, 128-129 clinical considerations in colonic aganglionosis, 128-129, 128f rectoprostatic fistula, 129 rectourethral fistula, 129, 129f rectovaginal fistula, 129, 129f rectovesical fistula, 129, 129f development of, 128, 128f, 130 sources of, 128, 128f

Anal membrane, 128, 128f Androgen insensitivity, complete, 190–191, 190f Anemia, Cooley, 32 Anencephaly, 89, 89f Angioblasts, 29 Angiogenesis, in week 3-8 extraembryonic mesoderm, 29 Angiogenic cell clusters, 29 Ankyloglossia, 153 Annular hymen, 179f Annular pancreas, 123, 123f Anophthalmia, 111 Anorectal agenesis, 130 Anovulation, 7 Anterior chamber, 109 Anterior commissure, 83 Anterior condensation of lower limb, 238, 239f of upper limb, 230, 231f Anterior interosseous artery, 229, 229f Anterior tibial artery, 236, 237f Antigens, oncofetal, 21, 21t Anus, imperforate, 130 Aortae, dorsal, 47, 48f Aortic arch arteries, 47, 48t Aortic arches, 47, 48f double, 47 right, 47 upper limb vasculature from, 228 Aorticopulmonary (AP) septum clinical considerations in, 39-41, 39f-40f D-transposition of great arteries, 39-40, 40f persistent truncus arteriosus, 39, 39f tetralogy of Fallot, 40-41, 40f formation of, 39, 39f APGAR score, 252, 253t Apical ectodermal ridge (AE) lower limb, 236 upper limb, 228 Apoptosis in lower limb development, 236 in upper limb development, 228 Appendages, auricular, 102, 102f Appendix. See also Midgut derivatives retrocecal, 127 retrocolic, 127 Appendix epididymis, 184, 185f Appendix testis, 184, 185f Aqueductal stenosis in Arnold-Chiari malformation, 89.89f congenital, 90, 90f Aqueous humor, 106 Archicortex, 83 Arms, chromosome, 1 Arnold-Chiari malformation, 89, 89f Arrhinencephaly, 91-92, 91f

Arterial system, 47–49, 48f clinical considerations in abnormal origin of subclavian artery, 47 double aortic arch, 47 patent ductus arteriosus, 47, 48f postductal coarctation of aorta, 47, 48f right aortic arch, 47 general pattern of, 4, 48f, 48t7 Ascending colon, 123-127. See also Midgut derivatives Astrocytes, 75-76, 75f Atresia "apple peel," 126, 126f auricular, 102, 102f biliary, 121, 121f esophageal, 117, 117f, 134-137, 135f-137f (See also Esophageal atresia) external auditory meatus, 102, 102f foramina of Luschka, 90, 90f forman of Magendie, 90, 90f intestinal, 126, 126f rectal, 130 tricuspid, 44-45, 44f of vagina, 176 Atrial septal defects (ASDs) common atrium, 42, 42f foramen secundum defect, 42, 42f premature closure of foramen ovale, 42 probe patency of foramen ovale, 42 Atrial septum, 41, 41f Atrioventricular (AV) bundle, 46 Atrioventricular (AV) node, 46 Atrioventricular (AV) septal defects Ebstein's anomaly, 43-44, 44f foramen primum defect, 44, 44f persistent common AV canal, 43, 43f tricuspid atresia, 44-45, 44f Atrioventricular (AV) septum, 43, 43f Atrium common, 42, 42f primitive, 37, 38f Auditory meatus, external, 100, 100f, 101t Auditory tube, 99f, 100, 101t Auricle development, 100, 100f, 101t low-set slanted, 101, 101f Auricular appendages, 102, 102f Auricular hillocks, 100, 100f, 101t Auricular minor malformations, 101, 101f Autosomal pairs, 1 AV cushion, 43, 43f, 45 Axillary artery, 229, 229f Axillary nerve, 230 Axis artery of lower limb, 236, 237f, 238 of upper limb, 228, 229, 229f Barr body, 1 Basal motor plate neuroblasts, 80 Basal plate, 78, 78f Basal plate motor neuroblasts, 79-81, 80f Basal tube parasympathetic nervous system from, 84 sympathetic nervous system from, 84 Bassen-Kornzweig syndrome, 111 β₂-microglobulin, 21t β-thalassemia major, 31-32

Beta cells, pancreatic, 121 Bicornuate uterus anomalies, 177, 177f Bilateral undescended testes, 188, 188f Bile ducts, extrahepatic, 120–121, 120f Biliary atresia, 121, 121f Bilirubin, 65, 252 Bilobed gallbladder, 121, 121f Bipartite placenta, 64 "Bird beak" esophagus, 118, 118f Bisphenol A, 263 Bladder exstrophy of, 164, 164f, 186 urinary, 159, 160f Blastocyst, 13, 13f Blastocyst cavity, 13, 13f Blastocyst formation, 13, 13f Blastomere, 12-13, 13f Blood vessel formation. See Vasculogenesis "Blue baby," 46, 46f "Blue kid," 46, 46f BMP-4, 70, 72 BMP-7, 70, 72 BMP (bone morphogenetic protein) in lower limb development, 236 in upper limb development, 228 Body cavities, 244-246 diaphragm positional changes in, 245 intraembryonic coelom formation in, 244, 245f intraembryonic coelom partitioning in, 244-245, 245f Bombesin, 21t Bone formation lower limb childhood, 241, 241f weeks 5-9, 240, 240f weeks 9-birth, 240-241, 240f upper limb childhood, 233, 233f weeks 5-9, 232, 232f weeks 9-birth, 232, 232f Bony labyrinth, 98-99 Brachial artery, 229, 229f Brachial plexus, 229-230, 230f Bradycardia, fetal, 252 Brain, from neural tube, 70 Broad ligament, 173 Bronchi clinical considerations in bronchiectasis, 138-139 bronchopulmonary segment, 138 congenital bronchogenic cysts, 138, 138f congenital lobar emphysema, 138, 138f lobar, 134, 137 segmental, 134, 137 sources of, 138 stages of development of, 137-138, 137f subsegmental, 134, 137 Bronchial buds, 134, 135f, 137 Bronchiectasis, 138-139 Bronchogenic cysts, congenital, 138, 138f Bronchopulmonary segments, 137, 137f, 138 Bulbar ridges, 39, 39f, 45 Bulbous urethra, 160-161, 160f Bulbus cordis, 37, 38f Bundle of His, 46 Buphthalmos, 110, 110f Busulfan, 261

CA 15-3, 21t CA 19-9, 21t CA 125, 21t Café au lait spots, 73 Caffeine, 263 Canalicular period, 139, 139f Canal of Schlemm, 106, 109 Capacitation, 4 Capillary endothelium, fetal, 58, 58f Carcinoembryonic antigen (CEA), 21t Cardiac jelly, 37, 38f Cardinal veins, 49, 49f, 49t Cardiogenic region, 28f, 29 Cardiovascular system, 37-49. See also specific parts aorticopulmonary septum, 39-41, 39f-40f arterial system, 47-49, 48f, 48t atrial septal defects, 42, 42f atrial septum, 41, 41f (See also Atrial septum) atrioventricular septal defects, 43-45, 43f-44f atrioventricular septum, 43, 43f conduction system of heart, 46-47 coronary arteries, 47 heart tube formation, 37, 38f interventricular septal defects, 45-46, 46f interventricular septum, 45, 45f primitive heart tube dilations, 37, 38f venous system, 49, 49f, 49t Cataracts, congenital, 110, 110f "Catch 22," 153 Category D drugs, 262-263 Category X drugs, 261-262 Cauda equina, 78 Caudal dysplasia, 32, 32f Cavities, body, 244-246 clinical considerations in congenital diaphragmatic hernia, 245-246, 246f esophageal hiatal hernia, 246, 246f diaphragm positional changes in, 245 intraembryonic coelom formation in, 244, 245f intraembryonic coelom partitioning in, 244-245, 245f Cecum, 123-127. See also Midgut derivatives Cell death in lower limb development, 236 in upper limb development, 228 Central artery, of retina, 107f, 108 Central nervous system (CNS), 70 Central vein, of retina, 108 Centromere, 1, 2f Cephalic flexure, 74, 75f Cerebellar hemispheres, 80 Cerebellar plate, 80 Cerebellum, 80 Cerebral cortex, 83, 83f Cerebral hemispheres, 82, 82f Cerebral neocortex, 83 Cervical flexure, 74, 75f Cervix agenesis, 176, 176f Cervix hypoplasia, 176, 176f CFTR gene, 141 CHARGE association, 73 Chemical agents, 263 on fetus, 263 Chickenpox, on fetus, 258 Childhood polycystic kidney disease, 163, 163f

Chlorambucil, 261 Chlordiazepoxide, 263 Choanae, primitive, 150 Cholesteatoma, congenital, 103, 103f Chorda tympani nerve, 147 Chordee, 186, 187f Chordin, 70 Chordoma, 31, 92 Choriocarcinoma, 21, 21f Chorionic villi biopsy of, 252 primary, secondary, and tertiary, 55, 56f week 3-8 formation of, 29 Choroid, 109 Choroid fissure, 107f, 108, 108f Choroid plexus, 79, 85 Choroid plexus cells, 76, 76f Chromatids, 1, 2f Chromosome diploid, 1 haploid, 1 Chromosomes, 1, 2f duplicated, 1, 2f sex, 1 single, 1, 2f Ciliary body, 106, 107f, 108f Ciliary muscle, 106, 108f Ciliary processes, 106, 108f Ciliary zonule, 106 Circulatory system changes at birth in, 61 of fetus, 60-61, 61f Circumvallate papillae, 147 Circumvallate placenta, 64, 64f Cleavage, 12-13, 13f Cleft lip, 153, 153f Cleft palate, 153 Clitoris, 175f, 176 Cloaca, 127, 128f Cloacal membrane, 26, 27f, 115, 116f, 127, 128f Clomiphene, 262 Clomiphene citrate, 7 Coarctation of aorta postductal, 47, 48f preductal, 47, 48f Cocaine, 264 Cochlear duct, 98, 99f, 101t Cochlear nuclei, 78, 79, 79f Coelom, intraembryonic, 28f, 29 formation of, 244, 245f partitioning of, 244-245, 245f COL2A1 gene, 101, 101f COL11A1 gene, 101, 101f Collecting system, 156, 158f Coloboma iridis, 110, 110f Colon. See also Midgut derivatives ascending, 123-127 descending, 127, 128f sigmoid, 127, 128f transverse distal one third of, 127, 128f proximal two thirds of, 123-127 Colonic aganglionosis, 128-129, 128f Combination pills, contraceptive, 6 Commissures, 83 Common atrium, 42, 42f Common peroneal nerve, 239 Communicating hydrocephalus, 90, 90f

Compaction, 13 Complete androgen insensitivity (CAIS), 190-191, 190f Conchae, 150 Conduction system of heart, 46-47 Congenital adrenal hyperplasia (CAH), 167-168, 167f, 189 Congenital aqueductal stenosis, 90, 90f Congenital bronchogenic cysts, 138, 138f Congenital cataracts, 110, 110f Congenital cholesteatoma, 103, 103f Congenital diaphragmatic hernia, 141, 245-246, 246f Congenital glaucoma, 110, 110f Congenital hypothyroidism, 153, 153f Congenital inguinal hernia, 188 Congenital lobar emphysema (CLE), 138, 138f Conjoined twins, 63, 63f Connecting stalk, 60 Contraception hormonal, 6-7 postcoital, 6 Contraceptives, oral, 6 Conus medullaris, 78 Cooley anemia, 32 Cornea, 109 Corneal endothelium, 109 Corona radiata, sperm penetration of, 12 Coronary arteries, 47 Corpora cavernosa penis, 186 Corpus callosum, 83-84 Corpus spongiosum, 186 Corpus striatum, 83 Cortical plate, 83, 83f Cortical reaction, 12 Cor triloculare biatrium, 45 Cor triloculare biventriculare, 42, 42f Cotyledons, 55, 56f Cranial nerves, 84-85. See also specific cranial nerves Craniocaudal folding, 27 Craniopharyngioma, from Rathke's pouch, 82 Cranium bifida with meningocele, 88, 88f with meningoencephalocele, 88, 88f with meningohydroencephalocele, 88, 88f Crescentic hymen, 179f c-Ret. 156 Cretinism, 153, 153f Cribriform hymen, 179f Crus cerebri, 81 Cryptorchidism, 188, 188f Cyclopia, 111 CYP21A2 deficiency, 167-168, 167f, 189 Cystic duct, 120 Cystic duct developmental anomalies, 121, 121f Cystic fibrosis, 141 Cysts, hydatid of Morgagni, 175, 175f Cytomegalovirus (CMV) infections, 258 Cytomegalovirus (CMV) infection teratogenicity, 259, 260f Cytotrophoblast, 13f, 14, 58, 58f

Dandy-Walker syndrome, 90, 90f Dating, pregnancy, 250 Days 1-7, of human development, 12-17. See also Week 1 Days 8-14, of human development, 18-21. See also Week 2 Deafness, congenital, 103 Decidua, 55 Decidua basalis, 55, 57f Decidua capsularis, 55, 57f Decidua parietalis, 55, 57f Deep palmar arch, 229, 229f Deep plantar arch, 236, 237f Delta cells, pancreatic, 121 Depo-Provera, 6 Dermatome, 28f, 29 of lower limb, 240, 240f of upper limb, 231-232, 231f Descending colon, 127, 128f Detached retina, 111, 111f Dextral looping, 37, 38f Diabetic mothers, hyperplasia of pancreatic islands in infants of, 123 Diaphragm development of, 119, 244-245, 245f positional changes of, 245 Diaphragmatic hernia, congenital, 141, 245-246, 246f Diazepam, 263 Didelphys, 177, 177f Diencephalon, 74, 75f, 81, 81f Diethylstilbestrol (DES), 7, 262 Diethylstilbestrol (DES)-related anomalies, 178, 178f DiGeorge syndrome, 153 Digestive system, 115-130. See also specific organs anal canal, 128f, 130 foregut derivatives, 115-123 esophagus, 115-118 gallbladder and extrahepatic bile ducts, 120-121, 120f, 121f liver, 119-120, 120f pancreas, 119f, 121-123, 122f, 123f stomach, 118-120 development and sources of, 118, 119f hypertrophic pyloric stenosis of, 119, 119f hindgut derivatives, 127-129 distal one third of transverse colon, descending colon, sigmoid colon, 127, 128f rectum and upper anal canal, 128-129, 128f-129f mesenteries, 130, 130t midgut derivatives, 123-127 (See also Midgut derivatives) jejunum, ileum, cecum, appendix, ascending colon, proximal two thirds of transverse colon, 123-127 lower duodenum, 123 overview, 115, 116f Digit formation lower limb, 236 upper limb, 228 Dilator pupillae muscle, 106, 108f Diploid chromosome, 1 Diverticulum, gall bladder, 121, 121f Dizygotic twins, 62, 63f DNA analysis, with amniocentesis, 252 Dorsal AV cushion, 43, 43f

Index

Dorsal column nuclei, 79, 79f Dorsalis pedis artery, 236, 237f Dorsal mesentery, 130, 130t Dorsal motor nucleus of vagus nerve, 79 Double aortic arch, 47 "Double bubble" sign, 123, 123f Double inferior vena cava, 49 Double superior vena cava, 49 Down syndrome, 4, 101, 101f Doxycycline, 262 Drugs, recreational, 263-264 DS, 153 DTaP vaccine, 261 D-transposition of great arteries, 39-40, 40f Ductus arteriosus, 61, 61f Ductus deferens, 184, 185f Ductus venosus, 60, 61f Duodenal obstruction, from annular pancreas, 123, 123f Duodenum, lower, 123 Duplex placenta, 64 Duplication of intestines, 127, 127f Dura mater, from mesoderm, 70 Ear. 98-103 congenital malformations, 101-103 atresia of external auditory meatus, 102, 102f auricular appendages, 102, 102f congenital cholesteatoma, 103, 103f congenital deafness, 103 low-set slanted auricles, 101, 101f microtia, 103, 103f minor auricular, 101, 101f preauricular sinus, 102, 102f external, 100, 100f, 101t internal, 98, 99f, 101t membranous and bony labyrinths, 98-99 middle, 99f, 100, 101t overview, 98 Ebstein's anomaly, 43-44, 44f Eclampsia, 66 Ectoderm embryonic, 26, 27f at weeks 3-8, 29, 30t Ectopia renal, 161 ureteral, 164–165 Ectopic opening of ureter, 164-165 Ectopic parathyroid tissue, 152, 152f Ectopic thymus tissue, 152, 152f Ectopic thyroid tissue, 152, 152f Ectopic tubal pregnancy, 14 Edinger-Westphal nucleus, on CN III, 80, 80f Edwards syndrome. See Trisomy 18 Efferent ductules, of testes, 184, 185f Eisenmenger complex, 46, 46f Ejaculatory duct, 184, 185f Embryo, indifferent female, 171, 172f, 191t male, 183, 191t Embryoblast week 1, 13, 13f week 2, 18, 19f weeks 3-8, 27-29 gastrulation, 27-28, 28f intraembryonic mesoderm changes, 28-29, 29f, 30t

Embryonic carcinoma (EC) cells, 14 Embryonic period, 27-32. See also Weeks 3-8 in teratology, 258 Embryonic stem (ES) cells, in testicular teratocarcinoma, 14 Emergency contraceptive pills (ECPs), 6–7 Emphysema, congenital lobar, 138, 138f End arteries, 158 Endocardial tube, 37, 38f Endocardium, 37, 38f Endoderm, 26, 27f digestive system from, 115 at weeks 3-8, 29, 30t Endolymphatic duct and sac, 98, 99f, 101t Endoneurium, from mesoderm, 70 Endothelial cells, 29 Endothelium, of fetal capillaries, 58, 58f Ependymal cells, 76, 76f Ependymocytes, 76, 76f Epiblast, 27, 27f Epidermoid cyst, of ear, 103, 103f Epididymis, 184, 185f Epineurium, from mesoderm, 70 Epispadias, 186, 187f Epithalamus, 81, 81f Epoophoron, 174f Epoophoron cyst, 175, 175f Erythroblastosis fetalis, 65–66 Esophageal atresia, 117, 117f, 134-137, 135f-137f only, 134, 136, 136f with tracheoesophageal fistula at distal one-third of trachea, 135, 135f at proximal and distal end of trachea, 136.136f at proximal end of trachea, 137, 137f Esophageal duplication, 117, 117f Esophageal hiatal hernia, 246, 246f Esophageal stenosis, 117, 117f Esophagogastric sphincter, 246, 246f Esophagus, 115-118 clinical considerations in achalasia, 118, 118f esophageal atresia, 117, 117f, 134-137, 135f-137f esophageal duplication, 117, 117f esophageal stenosis, 117, 117f vascular compression of esophagus, 118, 118f development and sources of, 115 Estazolam, 261 Estimated date of confinement (EDC), 250 Estradiol from placenta, 59 in pregnancy, 250 Estriol from placenta, 59 in pregnancy, 250 Estrone from placenta, 59 in pregnancy, 250 Ethisterone, 262 Examination, comprehensive, 267-283 answers, 277-283 questions, 267-276 Exstrophy of bladder, 164, 164f, 186 Extensor musculature of lower limb, 238 of upper limb, 230

297

External auditory meatus atresia of, 102, 102f development of, 100, 100f, 101t External ear, 100, 100f, 101t External genitalia primordia female, 175-176, 175f male, 186, 186f External iliac artery, 237f, 238 Extraembryonic mesoderm development, 18-20, 19f Extraocular muscles, 109 Eye, 106-112 anterior chamber, 109 canal of Schlemm, 109 choroid, 109 congenital conditions of, 110f, 111 congenital malformations of, 110-112 anophthalmia, 111 coloboma iridis, 110, 110f congenital cataracts, 110, 110f congenital glaucoma, 110, 110f cvclopia, 111 detached retina, 111, 111f hereditary retinoblastoma, 112, 112f microphthalmia, 111, 111f papilledema, 111 persistent iridopupillary membrane, 111, 111f retinitis pigmentosa, 111 retinocele, 111 retrolental fibroplasia, 111 cornea, 109 extraocular muscles, 109 lens, 109 optic vesicle, 106-109, 107f, 108f, 110t ciliary body, 106, 107f, 108f invagination and optic cup and stalk, 106, 107f, 110t iris, 106, 107f, 108f optic stalk and derivatives, 108-109, 110t optic sulcus, 106 PAX6 gene, 106 retina, 106, 107f sclera, 109 vitreous body, 109 Face, 148–149, 148f Facial nerve (CN VII), 85 Facial nucleus, 80 Falciform ligament, 120 False knot, umbilical cord, 65 Female phenotype, 171, 182 Female pronucleus, 12 Female pseudo-intersexuality (FP), 189, 189f Female reproductive system. See Reproductive system, female Femoral artery, 237f, 238 Femoral nerve, 239 Fertility, male, 6 Fertilization, 12 Fetal alcohol syndrome, 91-92, 91f, 262 Fetal bradycardia, 252 Fetal distress, during labor, 252 Fetal heart rate (FHR), 252 Fetal hydantoin syndrome, 261 Fetal hypoxia, 252 Fetal scalp capillary pH, 252

FGF-8 (fibroblast growth factor), 70 Fibroblast growth factors (FGFs) in hepatic development, 119f in lower limb development, 236 in upper limb development, 228 Filensin, 109 Filiform papillae, 147 Filum terminale, 78 Filum terminale syndrome, 92, 92f First arch syndrome, 151, 151f First polar body, 3, 3f Fistula rectoprostatic, 129 rectourethral, 129, 129f rectovaginal, 129, 129f rectovesical, 129, 129f Flexor musculature of lower limb, 238 of upper limb, 230 Flexures, brain, 74, 75f Floating gallbladder, 121, 121f Flocculonodular lobe, 80 Floor plate, 78, 78f Foliate papillae, 147 Folic acid, for neural tube defect prevention, 86 Follicles, primordial, 173 Foramen ovale, 41, 41f, 60, 61f premature closure of, 42 probe patency of, 42 Foramen primum, 41, 41f Foramen primum defect, 44, 44f Foramen secundum, 41, 41f Foramen secundum defect, 42, 42f Foramina of Luschka atresia, 90, 90f Forebrain, 74, 75f, 81, 81f Foregut derivatives, 115-123. See also specific organs esophagus, 115-118 gallbladder and extrahepatic bile ducts, 120-121, 120f, 121f liver, 119-120, 120f pancreas, 119f, 121-123, 122f, 123f stomach, 118-119, 119f Foreskin, 186, 186f Forman of Magendie atresia, 90, 90f Fornical commissure, 83 Fraternal twins, 62, 63f Frontonasal prominence, 148, 148f Fungicides, 263 Fungiform papillae, 147 Gallbladder clinical considerations in biliary atresia, 121, 121f developmental anomalies of cystic duct, 121, 121f developmental anomalies of gallbladder, 121, 121f bilobed gallbladder, 121, 121f diverticulum of gall bladder, 121, 121f septated gallbladder, 121, 121f two gallbladders, 121, 121f floating gallbladder, 121, 121f intrahepatic gallbladder, 121, 121f development of, 119, 120, 120f sources of, 120 Gallbladder rudiment, 120, 120f

Gametogenesis, 1 female, 1, 2-4, 3f male, 4, 5f Gartner's duct cyst, 175, 175f Gastric mucosa, heterotopic, 125 Gastrointestinal (GI) system. See Digestive system Gastroschisis, 124-125, 124f Gastrulation, 27-28, 28f **GDNF** 156 General somatic afferent (GSA) column, 79, 79f General visceral afferent (GVA) column, 79, 79f Geniculate ganglion, 147 Genital ducts female, 173-175, 174f male, 184, 185f Genitalia primordia, external female, 175-176, 175f male, 186, 186f German measles, on fetus, 257 Germ cells, primordial, 1 female, 2, 3f male, 4, 5f Germinal matrix hemorrhage (GMS), 141 Gestational trophoblastic neoplasia (GTN), 21, 21f Glans penis, 186, 186f Glaucoma, 109 Glaucoma, congenital, 110, 110f Glial fibrillary acidic protein (GFAP), 76 Glioblasts, 75-77, 75f Globus pallidus, 83 Glomeruli, 157-158 Glossopharyngeal nerve (CN IX), 85, 148 Glutamine synthetase, 76 Gluteal artery, inferior, 237f, 238 Gluteal nerve inferior, 239 superior, 239 Gonadal ridge female, 172f, 173 male, 182, 183f Gonads female, 171-173, 172f male, 182-184, 183f Greater omentum, 118, 119f Gubernaculum, 173, 191t Gut tube, primitive, 115, 116f Gyri, 82, 82f Haploid chromosome, 1 HBA1 gene, 31-32 HBA2 gene, 31-32 HBB gene, 32 HBV vaccine, 261 Head and neck, 145-155. See also specific parts clinical considerations in ankyloglossia, 153 cleft lip, 153, 153f cleft palate, 153 congenital hypothyroidism, 153, 153f DiGeorge syndrome, 153 ectopic thymus, parathyroid, or thyroid tissue, 152, 152f first arch syndrome, 151, 151f lingual cyst, 152, 152f pharyngeal cyst, 151, 151f pharyngeal fistula, 151, 151f thyroglossal duct cyst, 152, 152f

face, 148-149, 148f mouth, 150 nasal cavities, 150 palate, 149-150, 149f pharyngeal apparatus, 145, 146f, 147t thyroid gland, 145 tongue, 147-148, 148f Heart conduction system, 46-47 Heart-forming regions (HFRs), 37, 38f Heart rate, fetal, 252 Heart tube, 37, 38f Hematopoiesis, in weeks 3-8, 31, 31f Hematopoietic stem cells, in umbilical cord blood, 254 Hemolytic disease, severe, 65 Hepatic cords, 119 Hepatic diverticulum, 119, 120f Hepatic sinusoids, 119 Hepatocytes, 120 Hepatoduodenal ligament, 120 Hepatogastric ligament, 120 Hepatopancreatic ampulla of Vater, 122 Hepatopancreatic papillae, 122 Hereditary retinoblastoma, 112, 112f Hernia congenital diaphragmatic, 141, 245-246, 246f congenital inguinal, 188 esophageal hiatal, 246, 246f Heroin, 264 Herpes simplex virus (HSV), effects on fetus, 258 Herpes simplex virus (HSV) infection teratogenicity, 259, 260f Heterotopic gastric mucosa, 125 Hiatal hernia, esophageal, 246, 246f Hib vaccine, 261 High mobility group box, 171, 182 Hindbrain, 74, 75f Hindgut derivatives, 127-129 distal one third of transverse colon, descending colon, sigmoid colon, 127, 128f rectum and upper anal canal, 128-129, 128f-129f Hippocampal commissure, 83 Hirschsprung disease, 128-129, 128f Hofbauer cells, 58, 58f Holoprosencephaly, 91-92, 91f Homeobox complex, 27 Homer-Wright pseudorosettes, 166, 166f Homologous pairs, 1 Hormonal contraception, 6-7 Horseshoe kidney, 162, 162f Hortega cells, 77, 77f Hox complex, 27, 145 Hoxd genes in lower limb development, 236 in upper limb development, 228 H-type tracheoesophageal fistula only, 136, 136f Human chorionic gonadotropin (hCG), 20, 21t, 59,249 Human immunodeficiency virus (HIV), on fetus, 258 Human placental lactogen (hPL), 59, 249 Hyaloid artery, 109 Hyaloid canal, 109 Hyaloid vein, 108 Hydatid cyst of Morgagni, 175, 175f Hydatidiform mole, 20, 20f

Hydranencephaly, 91, 91f Hydrocele of testes, 188, 188f Hydrocephalus, 89 in Arnold-Chiari malformation, 89, 89f communicating (nonobstructive), 90, 90f noncommunicating (obstructive), 90, 90f Hydrochlorothiazide, 263 Hydrops fetalis, 32 21-Hydroxylase deficiency, 167-168, 167f, 189 Hydroxyurea, for sickle cell disease, 32 Hymen variations, 178, 179f Hyperplasia, of pancreatic islands, 123 Hypertrophic pyloric stenosis, 119, 119f Hypoblast, 26, 27f Hypoglossal nerve (CN XII), 85, 148 Hypoglossal nucleus, 79 Hypogonadism, primary, 6 Hypophysis, 82, 82f Hypospadias, 186, 187f Hypothalamic-pituitary disease, 6 Hypothalamus, 81, 81f Hypothyroidism, congenital, 153, 153f Hypoxia, fetal, 252 Identical twins, 62-63, 63f Ileal diverticulum, 60, 125, 125f Ileum, 123-127. See also Midgut derivatives Imperforate anus, 130 Imperforate hymen, 179f Implantation, 13–14, 13f Incus, 99f, 100, 101t Indifferent embryo female, 171, 172f, 191t male, 183, 191t Infectious agents, on fetus, 257-259 nonviral infections Toxoplasma gondii, 259 Treponema pallidum, 259, 259f TORCH infections, 259, 260f viral infections, 259 cytomegalovirus, 258 herpes simplex virus, 258 human immunodeficiency virus, 258 rubella virus, 257 varicella zoster virus, 258 Inferior gluteal artery, 237f, 238 Inferior gluteal nerve, 239 Inferior mesenteric artery, 162 Inferior olivary nuclei, 79, 79f Inferior salivatory nucleus of glossopharyngeal nerve, 79 Inferior vena cava, 49f, 61f absence of hepatic portion of, 49 double, 49 Infundibulum, 82, 82f Inguinal hernia, congenital, 188 Inner cell mass, 13 Insecticides, 263 Intermaxillary segment, 149 Intermediate mesoderm, 28f, 29 Intermediate zone of cerebral cortex, 83, 83f of neural tube, 77, 77f Internal ear, 98, 99f, 101t Internal germinal layer, of cerebellum, 80

Interosseous arteries, 229, 229f Intersegmental artery, seventh, 228 Intersex phenotype, 171, 182 Intersexuality, 188 Interventricular (IV) foramen, 45 Interventricular (IV) septal defects, 45-46, 46f common ventricle, 45 membranous VSD, 45-46, 46f muscular VSD, 45 Interventricular (IV) septum, 45, 45f Intestinal atresia type I, 126 type II, 126, 126f type IIIa, 126, 126f type IIIb, 126, 126f type IV, 126 Intestinal duplication, 127, 127f Intraembryonic coelom, 28f, 29 formation of, 244, 245f partitioning of, 244–245, 245f Intraembryonic mesoderm, 26-27, 27f Intraembryonic mesoderm changes, 28-29, 29f, 30t Intraembryonic somatic mesoderm, 28f, 29 Intraembryonic visceral mesoderm, 28f, 29 Intrahepatic gallbladder, 121, 121f Intramural network, of Purkinje myocytes, 46 Intraretinal space, 106 Intussusception, 127 Iodine cocktails, radioactive, teratogenic effects of, 264 Ionizing radiation, 264 teratogenic effects of, 264 Iridopupillary membrane, 109 Iridopupillary membrane, persistent, 111, 111f Iris, 106, 107f, 108f Islet cells, 120f, 121 Isocortex, 83 Isotretinoin, 262 Jejunum, 123-127. See also Midgut derivatives Kidneys blood supply of, 158 horseshoe, 162, 162f multicystic dysplastic, 163, 163f pancake, 161 pelvic, 161 relative ascent of, 157-158, 158f Knots, umbilical cord, 65, 65f Kobelt's cyst, 175, 175f Labia majora, 175f, 176 Labia minora, 175f, 176 Labioscrotal swellings female, 175, 175f, 191t male, 186, 186f, 191t Lacrimal sac, 149 Lactate dehydrogenase (LDH), 21t Lactation, 253 Lactiferous ducts, 253 Lamina terminalis, from neural tube, 70, 71f Langhans cells, 58, 58f Laryngeal orifice, 134 Larynx, 134 Last menstrual period (LMP), 250

Lateral arteries, 47, 48t

Index

Lateral cord, 230 Lateral folding, 27 Lateral mesoderm, 28f, 29 Lateral plantar artery, 236, 237f Lead, 263 Lecithi-sphingomyelin (L/S) ratio, 252 Left-right shunting of blood in atrium, 43, 43f in ventricle, 45-46, 46f Left superior vena cava, 49 Left umbilical vein, 60, 61f Lens, 109 Lens capsule, 109 Lens epithelium, 109 Lens fibers, 109 Lens placode, 74, 109 Lens vesicle, 109 Lesser omentum, 120 Levonorgestrel, 6 Ligamentum arteriosum, 47, 48f Ligamentum teres, 120 Lightening, 251 Limb lower, 236-241 (See also Lower limb) upper, 228-233 (See also Upper limb) Lingual cyst, 152, 152f Lingual tonsil, 148, 148f Lisch nodules, 73 Lithium, 263 Liver clinical considerations in, 120 development of, 119-120, 120f sources of, 120 Lobar emphysema, congenital, 138, 138f Lobar prosencephaly, 92 Lorazepam, 263 Lower duodenum, 123 Lowered susceptibility period, 258 Lower limb, 236-241 apical ectodermal ridge, 236 digit formation, 236 musculature, 238, 239f nerves, lumbosacral plexus, 238-239, 239f rotation, 239-240, 240f skeletal, 240-241, 240f-241 childhood, 241, 241f weeks 5-9, 240, 240f weeks 9-birth, 240-241, 240f vasculature, 236-238, 237f zone of polarizing activity, 236 Lower vagina agenesis, 176, 176f Low-set slanted auricles, 101, 101f L-transposition of great arteries, 40, 40f Lumbosacral plexus, 238-239, 239f Lung bud, 134 Lungs, 139–141, 139f–140f clinical considerations in, 140-141 aeration at birth, 140 cystic fibrosis, 141 pulmonary agenesis, 141 pulmonary aplasia, 141 pulmonary hypoplasia, 141 respiratory distress syndrome, 140-141, 140f periods of development of alveolar, 140, 140f canalicular, 139, 139f pseudoglandular, 139, 139f terminal sac period, 139-140, 139f

Luteinizing hormone-releasing hormone (LH-RH) analogues, 7 Lysergic acid (LSD), 263 Macrosomia, 123 Male fertility, 6 Male phenotype, 171, 182 Male pronucleus, 12 Male pseudo-intersexuality (MP), 190, 190f Male reproductive system. See Reproductive system, male Male reproductive system anomalies, 186-187, 186f-187f Malleus, 99f, 100, 101t Malrotation of midgut loop, 125, 125f Mandibular prominence, 148, 148f Mandibulofacial dysostosis, 151, 151f Marfan syndrome, 6 Marginal zone, of neural tube, 77, 77f Marijuana, 263 Mature oocyte, 3, 3f Maxillary prominence, 148, 148f Maximum susceptibility period, 258 Meatal plug, 100, 101t Meckel's cartilage, 99f, 100, 101t Meckel's diverticulum, 60, 125, 125f Meckel syndrome, holoprosencephaly in, 91, 91f Medial cord, 230 Medial plantar artery, 236, 237f Median artery, 229, 229f Median nerve, 231 Median umbilical ligament, 60, 159 Medroxyprogesterone acetate, 6 Medullary carcinoma (MC) of thyroid, 72 Megestrol, 262 Meiosis, 1, 2, 2f, 3f in oogenesis, 2, 3f in spermatogenesis, 4, 5f Meiosis I, 2, 3f Meiosis II, 2, 3f Membranous interventricular septum, 45, 45f Membranous labyrinth, 98-99 Membranous placenta, 64 Membranous urethra, 160-161, 160f Membranous VSD, 45-46, 46f Meningocele cranium bifida with, 88, 88f spina bifida with, 86, 86f Meningoencephalocele, cranium bifida with, 88, 88f Meningohydroencephalocele, cranium bifida with, 88, 88f Meningomyelocele, spina bifida with, 86, 86f, 87f Menstrual cycle, progestational (secretory) phase of, 14 Menstrual period, first missed, 31 Mercury, organic, 263 Meroanencephaly, 89, 89f Mesencephalic trigeminal nucleus, 81 Mesencephalon, 74, 75f, 80-81, 80f Mesenteries, 130, 130t Mesoderm, 26-27, 27f extraembryonic, 27, 27f intermediate, 28f, 29 intraembryonic, 26-27, 27f intraembryonic somatic, 28f, 29 intraembryonic visceral, 28f, 29

301

Mesoderm (Cont.) lateral, 28f, 29 of nervous system, 70 paraxial, 27, 28f precardiac, 37, 38f at weeks 3-8, 29, 30t Mesoderm changes, intraembryonic, 28-29, 29f, 30t Mesoderm development, extraembryonic, 18-20, 19f Mesonephric ducts, 156, 158f female, 173, 174f, 191t male, 184, 185f, 191t Mesonephric tubules, 156, 157f, 191t Mesonephros, 156, 157f, 159f Metanephric mesoderm, 156, 157f, 158f Metanephric vesicles, 156 Metanephros, 156-157, 157f-159f Metencephalon, 74, 75f, 79-80, 79f Methadone, 264 Methotrexate, 261 Methoxychlor, 263 Microglia, 77, 77f Microimperforate hymen, 179f Microphthalmia, 111, 111f Microtia, 103, 103f Midbrain, 74, 75f, 80-81, 80f Midbrain flexure, 74, 75f Middle ear, 99f, 100, 101t Middle ear cavity, 99f, 100, 101t Midgut derivatives, 123-127 jejunum, ileum, cecum, appendix, ascending colon, proximal two thirds of transverse colon, 123-127 clinical considerations in, 124-127 duplication of intestines, 127, 127f gastroschisis, 124-125, 124f ileal diverticulum, 125, 125f intestinal atresia, type I, 126 intestinal atresia, type II, 126, 126f intestinal atresia, type IIIa, 126, 126f intestinal atresia, type IIIb, 126, 126f intestinal atresia, type IV, 126 intussusception, 127 malrotation of midgut loop, 125, 125f nonrotation of midgut loop, 125, 125f omphalocele, 124, 124f retrocecal and retrocolic appendix, 127 reversed rotation of midgut loop, 126 development of, 123, 123f sources of, 123, 123f lower duodenum, 123 Midgut loop malrotation of, 125, 125f nonrotation of, 125, 125f reversed rotation of, 126 Mifeprex, 20 Mifepristone, 20 Milk production, 253 MITF gene mutation, 73-74, 73f Mitochondrial DNA, 12 Mitral valve regurgitation, 43, 43f MMR vaccine, 261 Molecular layer, of cerebral cortex, 83 Monozygotic twins, 62-63, 63f Mons pubis, 175f, 176 "Morning-after" pills, 6–7 Morula, 13, 13f

Motor plate, 78, 78f Motor trigeminal nucleus, 80 Mouth, 150 msx-2 gene, 46 Mucosa, GI tract, 115 Müllerian ducts female, 173, 174f male, 184, 185f Müllerian hypoplasia/agenesis anomalies, 176, 176f Müllerian-inhibiting factor (MIF), 171, 182, 184 Multicystic dysplastic kidney, 163, 163f Multiple endocrine neoplasia (MEN) 2A/2B, 72 Muscular interventricular septum, 45, 45f Muscularis externa, GI tract, 115 Musculature of lower limb, 238, 239f of upper limb, 229, 230f Musculocutaneous nerve, 231 Myelencephalon, 74, 75f, 78-79, 79f Myelination, of spinal cord, 78, 78f Myocardium, 37, 38f Myocytes, Purkinje, 46 Myotome, 28f, 29 Myotomes, lower limb, 239 Naegele's rule, 250 Nasal cavities, 150 Nasal pits, 148f, 149 Nasal placodes, 74, 148-149 Nasal prominence, 148f, 149 Nasal sacs, 150 Nasolacrimal duct, 149 Nasolacrimal groove, 148f, 149 Navicular fossa, 160, 160f N-CAM, 70 Neocortex, 83 Nephron, 156-157, 158f Nerves lower limb, 238-239, 239f upper limb, 229-230, 230f Nervous system, 70–92 central, 70 choroid plexus, 85 congenital malformations, 86-92 anencephaly, 89, 89f Arnold-Chiari malformation, 89, 89f chordoma, 92 cranium bifida with meningocele, 88.88f cranium bifida with meningoencephalocele, 88, 88f cranium bifida with meningohydroencephalocele, 88, 88f holoprosencephaly, 91-92, 91f hydranencephaly, 91, 91f hydrocephalus, 89 communicating (nonobstructive), 90, 90f noncommunicating (obstructive), 90, 90f porencephaly, 91, 91f schizencephaly, 91, 91f spina bifida with meningocele, 86, 86f with meningomyelocele, 86, 86f, 87f with rachischisis, 86, 86f, 87f

Index

spina bifida occulta, 86, 86f tethered spinal cord, 92, 92f cranial nerves, 84-85 diencephalon, 81, 81f hypophysis, 82, 82f mesencephalon, 80-81, 80f metencephalon, 79-80, 79f cerebellum, 80 pons, 79, 79f myelencephalon, 78-79, 79f neural crest cells, 71f, 72-74, 73f (See also Neural crest cells) neural tube, 70, 71f early, layers of, 77, 77f histogenesis of, 75-77, 75f vesicle development of, 74, 75f optic vesicles, cups, and stalks, 81, 81f parasympathetic, 84 peripheral, 70 placodes, 74 spinal cord development, 77-78, 78f sympathetic, 84 telencephalon, 82-84 cerebral cortex, 83, 83f cerebral hemispheres, 82, 82f commissures, 83 corpus striatum, 83 Neural crest, at weeks 3-8, 30t Neural crest cells, 71f, 72-74, 73f clinical considerations CHARGE association, 73 medullary carcinoma of thyroid, 72 neurocristopathy, 72 neurofibromatosis type 1, 73, 73f Schwannoma, 73 Waardenburg syndrome, 73-74, 73f cranial, 72 from neural plate, 70 parasympathetic nervous system from, 84 trunk, 72 Neural plate, 70, 71f Neural tube, 70, 71f early, layers of, 77, 77f histogenesis of, 75-77, 75f vesicle development of, 74, 75f Neural tube defects (NTDs), 86, 86f, 87f Neuroblastoma, 165, 165f Neuroblasts, 75, 77 Neurocristopathy, 72 Neuroectoderm, 70, 71f at weeks 3-8, 30t Neurofibromatosis type 1 (NF1), 73, 73f Neurohypophysis, 82, 82f Neuron-specific enolase (NSE), 21t Neuropores, 70, 71f Neurulation, 70 NF1 gene mutation, 73, 73f Nicotine, 262 N number, 1 Noggin, 70 Noncommunicating hydrocephalus, 90, 90f Nonobstructive hydrocephalus, 90, 90f Nonrotation of midgut loop, 125, 125f Nonsex pairs, 1 Nonviral infections, on fetus Toxoplasma gondii, 259 Treponema pallidum, 259, 259f

Norethindrone, 262 Norethisterone, 262 Norplant, 6 Notochord, 28f, 29, 70, 71f Nucleus ambiguus, 79 Nucleus pulposus, 70 Obstructive hydrocephalus, 90, 90f Obturator nerve, 239 Oculomotor nerve (CN III), 84 Oculomotor nucleus, 80f, 81 Ogerstral, 6-7 Older men, offspring of, 6 Older women, offspring of, 4 Olfactory epithelium, 150 Olfactory nerve (CN I), 150 development of, 84 from nasal placode, 74 Olfactory placode, 74 Oligodendrocytes, 76, 76f, 78 Oligohydramnios, 62, 66, 161 Omentum, lesser, 120 Omphalocele, 60, 124, 124f Oncofetal antigens, 21, 21t Oocytes mature, 3, 3f number of, 4 primary, 2, 3f, 4, 173 secondary, 3-4, 3f Oogenesis, 1-4, 3f Oogonia, 2, 3f Open medulla, 79 Optic cup, 81, 81f, 106, 107f, 108f, 110t Optic nerve (CN II), 84, 107f, 108-109 Optic stalk, 81, 81f, 106, 107f, 108-109, 110t Optic sulcus, 106 Optic vesicle, 106-109, 107f, 108f, 110t ciliary body, 106, 107f, 108f invagination and optic cup and stalk, 106, 107f, 110t iris, 106, 107f, 108f optic stalk and derivatives, 108-109, 110t optic sulcus, 106 PAX6 gene, 106 retina, 106, 107f Optic vesicles, 81, 81f Oral contraceptives, 6 Organic mercury, 263 Oronasal membrane, 150 Oropharyngeal membrane, 115, 116f, 150 Ortho Evra, 6 Ossicles, 99f, 100, 101t Otic placode, 74, 98, 99f Otic vesicle, 99f from otic placode, 74 saccular portion, 98, 99f, 101t utricular portion, 98, 99f, 101t Outer cell mass, 13 Ovarian ligament, 173, 174f Ovary, 171-173, 172f Ovral, 6-7 Oxytocin, during lactation, 253 Paired pleuropericardial membranes, 244, 245f Palate, 149–150, 149f Palatine raphe, 149 Palatine shelves, 149, 149f

303

Paleocortex, 83 Pallium, 83, 83f Palmar arches, 229, 229f Palpebral coloboma, 110, 110f Pancake kidney, 161 Pancreas, 121-123 clinical considerations in accessory pancreatic duct, 122, 122f annular pancreas, 123, 123f hyperplasia of pancreatic islands, 123 pancreas divisum, 122, 122f development of, 119f, 121-122 sources of, 122 Pancreas divisum, 122, 122f Pancreatic buds, 120f, 121 Pancreatic duct, 122 Pancreatic duct, accessory, 122, 122f Pancreatic islands hyperplasia, in infants of diabetic mothers, 123 Pancreatic polypeptide (PP) cells, pancreatic, 121 Papilledema, 111 Paradidymis, 184, 185f Paramesonephric ducts female, 173, 174f, 191t male, 184, 185f, 191t Paraoophoron, 174f Paraoophoron cyst, 175, 175f Parasympathetic nervous system, 84 Parathyroid tissue, ectopic, 152, 152f Paraurethral glands of Skene, 159, 160f Paraxial mesoderm, 27, 28f p arm, 1 Patau syndrome. See Trisomy 13 Patent ductus arteriosus, 47, 48f PAX6 gene, 106 PAX3 gene mutation, 73-74, 73f Pectinate line, 130 Pelvic kidney, 161 Penile raphe, 186, 186f Penile urethra, 160-161, 160f Penis, 186, 186f Pentobarbital, 262 Percutaneous umbilical blood sampling (PUBS), 252 Pericardial cavity, 37, 38f, 244, 245f Pericardium, fibrous, 244 Perilymph, 98-100 Perilymphatic space, 98-100 Perineurium, from mesoderm, 70 Peripheral nervous system (PNS), 70 Peritruncal capillary ring, 47 Peroneal artery, 237f, 238 Persistent common AV canal, 43, 43f Persistent iridopupillary membrane, 111, 111f Persistent truncus arteriosus (PTA), 39, 39f pH, fetal scalp capillary, 252 Phallus in females, 175, 175f, 191t in males, 186, 186f, 191t Pharyngeal apparatus, 145, 146f, 147t Pharyngeal arch 1, 99f, 100, 101t, 148, 148f Pharyngeal arch 2, 99f, 100, 101t Pharyngeal arch 1 abnormal development, 151.151f Pharyngeal arches, 145, 146f, 147t Pharyngeal cyst, 151, 151f Pharyngeal fistula, 151, 151f

Pharyngeal groove 1, 100f, 101t, 145, 146f, 147t Pharyngeal groove cysts, 151, 151f Pharyngeal groove 2 fistula, 151, 151f Pharyngeal membrane, 145, 146f, 147t Pharyngeal pouch 1, 99f, 100, 101t Pharyngeal pouches, 145, 146f, 147t Pharyngeal pouch 2 fistula, 151, 151f Phenobarbital, 262 Phenotype, 171 Phenotypic sexual differentiation, 171, 183 Phenytoin, 261 Pheochromocytoma, 167, 167f Phosphatidylglycerol assay, 252 Phrenic nerves, 245, 245f Phthalates, 263 Pierre Robin syndrome, 151 Pigment layer, of retina, 106, 108f Pinna, 100, 100f, 101t Pituitary gland, 82, 82f Placenta clinical considerations in, 64-66 α -fetoprotein, 66 amniotic band syndrome, 65, 65f bipartite or tripartite placenta, 64 circumvallate placenta, 64, 64f duplex or triplex placenta, 64 erythroblastosis fetalis, 65-66 membranous placenta, 64 oligohydramnios, 66 placental abruption, 64 placental accreta, 64 placenta percreta, 65 placenta previa, 64 polyhydramnios, 66 preeclampsia and eclampsia, 66 premature rupture of amniochorionic membrane, 65 single umbilical artery, 65 succenturiate placenta, 64 umbilical cord knots, 65, 65f velamentous placenta, 64, 64f components of, 55, 57f as endocrine organ, 59 formation of, 55, 56f substances crossing/not crossing, 59t Placental abruption, 64 Placental accreta, 64 Placental membrane, 58, 58f, 59t Placenta percreta, 65 Placenta previa, 64 Placodes, 74 Plantar arches, lower limb, 236, 237f Plantar arteries, 236, 237f Platybasia, 89, 89f Pleural cavities, 244, 245f Pleuropericardial membranes, paired, 244, 245f Ploidy, 1 Pneumococcal vaccine (PCV7), 261 Polar body first, 3, 3f second, 3, 3f Polio vaccine, 261 Polychlorinated biphenyls (PCBs), 263 Polycystic kidney disease (PCKD), childhood, 163, 163f Polyhydramnios, 61, 66, 134 Pons, 79, 79f Pontine flexure, 74, 75f

Pontine nuclei, 79, 79f Popliteal artery, 237f, 238 Porencephaly, 91, 91f Portal triad, 120 Postcoital contraception, 6 Postductal coarctation of aorta, 47, 48f Posterior condensation of lower limb, 238, 239f of upper limb, 230, 231f Posterior cord, 230 Posterior interosseous artery, 229, 229f Posterior tibial artery, 236, 237f Posterolateral arteries, 47, 48t Potassium iodide (PI), 263 Potter syndrome, 141, 161 Preauricular sinus, 102, 102f Precardiac mesoderm, 37, 38f Preductal coarctation of aorta, 47, 48f Preeclampsia, 66 Prefertilization events, 1-7 anovulation, 7 chromosomes, 1, 2f clinical considerations, 4-7 hormonal contraception, 6-7 meiosis, 2, 2f oogenesis, 1-4, 3f sexual reproduction, 1 Pregnancy, 249-254 APGAR score in, 252, 253t chances of, in days near ovulation, 7, 7t collection and storage of umbilical cord blood in, 254 dating of, 250 endocrinology of estrone, estradiol, estriol, 250 human chorionic gonadotropin, 249 human placental lactogen, 249 progesterone, 249-250 prolactin, 249 fetal distress during labor, 252 lactation in. 253 milestones in first trimester, 250 second trimester, 250-251 third trimester, 251 prenatal diagnostic procedures in amniocentesis, 251-252 chorionic villus biopsy, 252 percutaneous umbilical blood sampling, 252 ultrasonography, 251 puerperium in, 253 small-for-gestational age infant in, 253 - 254Premature closure of foramen ovale, 42 Premature rupture of amniochorionic membrane, 65 Prenatal diagnostic procedures amniocentesis, 251-252 chorionic villus biopsy, 252 percutaneous umbilical blood sampling, 252 ultrasonography, 251 Preotic myotomes, 109 Primary oocytes, 2, 3f Primary sex cords female, 172f, 173 male, 183, 183f

Primitive atrium, 37, 38f Primitive groove, 26, 27f Primitive gut tube, 115, 116f Primitive heart tube dilations, 37, 38f Primitive node, 26, 27f Primitive pit, 26, 27f Primitive stomach, 118, 119f Primitive streak, 26, 27f Primitive umbilical ring, 60 Primitive ventricle, 37, 38f Primordial germ cells, 1 female, 2, 3f male, 4, 5f, 183f, 184 Principle trigeminal nucleus, 79, 79f Probe patency of foramen ovale, 42 Processus vaginalis, 173, 191t Proctodeum, 127, 128f, 130 Profunda femoris artery, 237f, 238 Progesterone, from placenta, 60 Progesterone-only pills, 6 Progesterone (PG), in pregnancy, 249-250 Prolactin (PRL) in lactation, 253 in pregnancy, 249 Pronator musculature, of upper limb, 230 Pronephros, 156, 157f Pronucleus female, 12 male, 12 Prosencephalon, 74, 75f Prostate-specific antigen (PSA), 21t Prostatic urethra, 160–161, 160f Pseudoglandular period, 139, 139f Pseudo-intersexuality female, 189, 189f male, 190, 190f Puerperium, 253 Pulmonary agenesis, 141 Pulmonary aplasia, 141 Pulmonary hypoplasia (PH), 141 Pulmonary hypoplasia (PH) with congenital diaphragmatic hernia, 246, 246f Purkinje myocytes, 46 Pyloric stenosis, hypertrophic, 119, 119f q arm, 1 22q11 syndrome, 153 Quickening, 251 Rachischisis, spina bifida with, 86, 86f, 87f Radial artery, 229, 229f Radial nerve, 230 Radiation, ionizing, teratogenic effects of, 264 Radioactive iodine cocktails, teratogenic effects of, 264 Rathke's pouch, 82, 82f RBC alloimmunization, 66 RB1 gene, 112 Recanalization, 115 Recreational drugs, on fetus, 263-264 Rectal atresia, 130 Rectoprostatic fistula, 129 Rectourethral fistula, 129, 129f Rectouterine pouch, ectopic pregnancy in. 14 Rectovaginal fistula, 129, 129f Rectovesical fistula, 129, 129f

Rectum, 128-129 clinical considerations in colonic aganglionosis, 128-129, 128f rectoprostatic fistula, 129 rectourethral fistula, 129, 129f rectovaginal fistula, 129, 129f rectovesical fistula, 129, 129f development and sources of, 128, 128f Red nucleus, 80f, 81 Redundant hymen, 179f Reicher's cartilage, 99f, 100, 101t Renal agenesis, 161 Renal artery stenosis, 162, 162f Renal dysplasia, 161 Renal ectopia, 161 Renal fusion, 162, 162f Renal hypoplasia, 161 Renal tubules, S-shaped, 156 Reproductive system, female, 171-179 clinical considerations in, 176-179 atresia of vagina, 176 bicornuate uterus anomalies, 177, 177f didelphys (double uterus) anomalies, 177, 177f diethylstilbestrol (DES)-related anomalies, 178, 178f hymen variations, 178, 179f Müllerian hypoplasia/agenesis anomalies, 176, 176f septate uterus anomalies, 178, 178f unicornuate uterus anomalies, 177, 177f uterine anomalies, 176-178, 176f-177f external genitalia primordia, 175-176, 175f genital duct cysts, 175, 175f genital ducts, 173-175, 174f gonads, 171–173, 172f indifferent embryo, 171, 191t summary table on, 191t Tanner stages of female sexual development, 176, 176t Reproductive system, male, 183–191 clinical considerations in, 186-191 bilateral undescended testes, 188, 188f complete androgen insensitivity, 190-191, 190f congenital inguinal hernia, 188 epispadias, 186, 187f female pseudo-intersexuality, 189, 189f hydrocele of testes, 188, 188f hypospadias, 186, 187f intersexuality, 188 male anomalies, 186-187, 186f-187f male pseudo-intersexuality, 190, 190f transgenderism, 191 transsexualism, 191 external genitalia primordia, 186, 186f genital ducts, 184, 185f gonads, 182–184, 183f indifferent embryo, 183, 191t summary table on, 191t Tanner stages of male sexual development, 186, 187t Resistant period, 258 Respiratory distress syndrome (RSD), 140-141, 140f Respiratory diverticulum, 134, 135f

Respiratory system, lower, 134-141. See also specific parts bronchi, 137-139, 137f, 138f developmental overview, 134, 135f larynx, 134 lungs, 139-141, 139f-140f trachea, 134-137, 135f-137f tracheoesophageal fistula, 134 Respiratory system, upper, 134 Rete ovarii, 172f, 173 Rete testes, 183, 183f Retina, 106, 107f Retina, detached, 111, 111f Retinal detachment, 106 Retinitis pigmentosa (RP), 111 Retinoblastoma (RB), hereditary, 112, 112f Retinocele, 111 Retinoic acid, in head and neck formation, 145 Retinopathy of prematurity, 111 RET protooncogene, 72, 128 Retrocecal appendix, 127 Retrocolic appendix, 127 Retrolental fibroplasia, 111 Reversed rotation of midgut loop, 126 $Rh_0(D)$ immune globulin, 65, 66 Rh factor, 65 Rh-hemolytic disease of newborn, 65-66 Rhombencephalon, 74, 75f Rhombic lips, 80 Rhombomeres (R1-R8), 72 Right aortic arch, 47 Roof plate, 78, 78f, 79 Rostral medulla, 79 Rotation of lower limb, 239-240, 240f of upper limb, 231-232, 231f Round ligament, of uterus, 173, 174f RU-486, 20 Rubella virus, 257 deafness from, 103 teratogenicity of, 259, 260f Saccular portion, of otic vesicle, 98, 99f, 101t Saccule, 98, 99f, 101t Sacrococcygeal teratoma, 32, 32f Schizencephaly, 91, 91f Schwann cells, myelination by, 78 Schwannoma, 73 Sciatic artery, 237f, 238 Sclera, 109 Sclerotome, 28f, 29 Scrotum, 186, 186f Seasonale, 6 Secondary palate, 149-150, 149f Secondary sex cords, 172f, 173 Semicircular ducts, 98, 99f, 101t Semilobar prosencephaly, 92

Secondary oocyte, 3, 3f Second polar body, 3, 3f Seminal vesicle, 184, 185f Seminiferous cords, 183, 183f Seminiferous tubules, 184

Sensory plate, 77, 78f Septal hymen, 179f

Septated gallbladder, 121, 121f Septate uterus anomalies, 178, 178f

Septum primum, 41, 41f

Septum secundum, 41, 41f Serosa, GI tract, 115 Sertoli cells, 184 Seventh intersegmental artery, 228 Severe hemolytic disease, 65 Sex chromosomes, 1 Sex cords, primary female, 172f, 173 male, 183, 183f Sexual development, Tanner stages of in females, 176, 176t in males, 186, 187t Sexual differentiation, phenotypic, 171, 183 Sexual reproduction, 1 Siamese twins, 63, 63f Sickle cell disease, hydroxyurea for, 32 Sigmoid colon, 127, 128f Single umbilical artery (SUA), 65 Sinoatrial (SA) node, 46 Sinovaginal bulbs, 173 Sinus venosus, 37, 38f Sirenomelia, 32, 32f Skeletal formation of lower limb, 240-241, 240f-241f of upper limb, 232-233, 232f-233f Small-for-gestational age (SGA) infant, 253-254 Smooth chorion, 55, 57f Solitary nucleus, 79, 79f, 147 Somatopleure, 28f, 29 Somite, 28f, 29, 109 Somitomeres, 27-29, 28f Sonic hedgehog in lower limb development, 236 in upper limb development, 228 Special somatic afferent (SSA) column, 78, 79, 79f Special visceral afferent (SVA) column, 79, 79f Spermatids, 4, 5f Spermatocytogenesis, 4, 5f Spermatogenesis, 1, 4, 5f Spermatogonia, type A and B, 4, 5f Sperm binding, 12 Spermiogenesis, 4, 5f Sperm-oocyte cell membrane fusion, 12 Sperm penetration of corona radiata, 12 of zona pellucida, 12 Sperm transport disorders, 6 Sphincter pupillae muscle, 106, 108f Spina bifida with meningocele, 86, 86f with meningomyelocele, 86, 86f, 87f with rachischisis, 86, 86f, 87f Spina bifida occulta, 86, 86f Spina bifida with myeloschisis, from posterior neuropore maldevelopment, 70 Spinal cord development of, 77-78, 78f from neural tube, 70 positional changes of, 78 tethered, 92, 92f Spinal trigeminal nucleus, 79, 79f Spiral ganglion (CN VIII), 98, 99f, 101t Splanchnopleure, 28f, 29 Spongioblasts, 75-77, 75f SRY gene, 171 S-shaped renal tubules, 156 Stapes, 99f, 100, 101t Stem cells, in umbilical cord blood, 254

Stickler syndrome, 101, 101f Stomach, 118–119 development and sources of, 118, 119f hypertrophic pyloric stenosis of, 119, 119f primitive, 118, 119f Stomodeum, 82 Streptomycin, 262 Striatal eminence, 83 Subclavian artery, 47, 228, 229f Submucosa, GI tract, 115 Subplate zone, of cerebral cortex, 83, 83f Substantia nigra, 80f, 81 Substantia propria, of cornea, 109 Subthalamus, 81, 81f Subventricular zone, of cerebral cortex, 83, 83f Succenturiate placenta, 64 Suckling, 253 Sulci, 82, 82f Sulcus limitans (SL), 78, 78f Superficial palmar arch, 229, 229f Superior gluteal nerve, 239 Superior salivatory nucleus, 80 Superior vena cava, 49f double, 49 left, 49 Supernumerary arteries, 158 Supinator musculature, of upper limb, 230 Suprarenal gland, 165-168, 166f clinical considerations in congenital adrenal hyperplasia, 167-168, 167f, 189 neuroblastoma, 165, 165f pheochromocytoma, 167, 167f cortex of, 165 medulla of, 165 overview of, 165f Surfactant, 140 Suspensory fibers, of lens, 106, 108f Sustentacular cells, 184 Sympathetic nervous system, 84 Syncytiotrophoblast, 13f, 14, 58, 58f Syphilis, teratogenicity of, 259, 260f Tanner stages of sexual development in females, 176, 176t in males, 186, 187t Tanycytes, 76, 76f Tela choroidea, 79 Telencephalon, 74, 75f, 82-84 cerebral cortex, 83, 83f cerebral hemispheres, 82, 82f commissures, 83 corpus striatum, 83 Tensor tympani muscle, 99f, 100, 101t Teratocarcinoma, testicular, 14 Teratology, 258-264 category D drugs, 262-263 category X drugs, 261-262 chemical agents, 263 infectious agents, 257-259 nonviral infections Toxoplasma gondii, 259 Treponema pallidum, 259, 259f TORCH infections, 259, 260f viral infections, 259 cytomegalovirus, 258 herpes simplex virus, 258

Teratology (Cont.) human immunodeficiency virus, 258 rubella virus, 257 varicella zoster virus, 258 ionizing radiation, 264 lowered susceptibility period in, 258 maximum susceptibility period in, 258 recreational drugs, 263-264 resistant period in, 258 Terminal plexus of lower limb, 236-238, 237f of upper limb, 228-229, 229f Terminal sac period, 139-140, 139f Terminal sulcus, 148, 148f Testes, 182-183, 183f bilateral undescended, 188, 188f hydrocele of, 188, 188f Testes-determining factor (TDF), 171, 182, 183 Testicular feminization syndrome, 190-191, 190f Testicular teratocarcinoma, 14 Testosterone, 171, 182, 184 Tethered spinal cord, 92, 92f Tetracycline, 262 Tetralogy of Fallot, 40-41, 40f Thalamus, 81, 81f Thalassemia syndromes, 31-32 Thalidomide, 261 Thymus tissue, ectopic, 152 Thyroglossal duct cyst, 152, 152f Thyroid gland, 145 Thyroid tissue, ectopic, 152, 152f Tibial arteries, 236, 237f Tibial nerve, 239 Tight junctions, 76 Tobramycin, 262 Tongue, 147-148, 148f Tongue buds, 147, 148f "Tongue-tie," 153 TORCH infections, 259, 260f Totipotent, 13 Toxoplasma gondii teratogenicity, 259, 260f Trabecular meshwork, 106 Trachea, 134-137 clinical considerations in, 134-137 esophageal atresia, 134-137, 135f-137f (See also Esophageal atresia) H-type tracheoesophageal fistula only, 136, 136f polyhydramnios, 134 sources of, 134 Tracheoesophageal fistula with esophageal atresia at distal one-third of trachea, 135, 135f at proximal and distal ends of trachea, 136, 136f at proximal end of trachea, 137, 137f H-type, 136, 136f Tracheoesophageal folds, 115, 134, 135f Tracheoesophageal septum, 115, 134, 135f Transgenderism, 191 Transposition of great arteries D-, 39-40, 40f L-, 40, 40f Transsexualism, 191 Transverse colon distal one third of, 127, 128f proximal two thirds of, 123-127 (See also Midgut derivatives)

Transverse groove, 80 Treacher Collins syndrome, 151, 151f Treacle protein, 151 Treponema pallidum teratogenicity, 259, 259f Triazolam, 261 Tricuspid atresia, 44-45, 44f Trigeminal nerve (CNV) development of, 85 lingual branch of, 147 Trigeminal nuclei, 79, 79f Trigone of bladder, 159 Tripartite placenta, 64 Triplex placenta, 64 Trisomy 13 auricular malformations in, 101, 101f holoprosencephaly in, 91, 91f Trisomy 18 auricular malformations in, 101, 101f holoprosencephaly in, 91, 91f Trisomy 21, 4, 101, 101f Trochlear nerve (CN IV), 85 Trochlear nucleus, 81 Trophoblast week 1, 13, 13f week 2, 18, 19f True intersexuality, 188 True knot, umbilical cord, 65 Truncal ridges, 39, 39f Truncus arteriosus, 37, 38f Tubuli recti, 183, 183f Tumor markers, oncofetal, 21, 21t Tunica albuginea female, 173 male, 183, 183f, 185f Twinning, 62-63, 63f Two gallbladders, 121, 121f Tympanic membrane, 99f, 100, 101t Ulnar artery, 229, 229f Ulnar nerve, 231 Ultrasonography, in pregnancy, 251 Umbilical arteries, 47, 48t lower limb, 236, 237f, 238 right and left, 60, 60f, 61f single umbilical artery, 65 Umbilical cord, 60, 60f Umbilical cord blood, 254 Umbilical cord knots, 65, 65f Umbilical herniation, physiological, 60 Umbilical ligament, median, 60 Umbilical ring, primitive, 60 Umbilical veins, 49, 49f, 49t, 60, 60f, 61f Umbilical veins, hepatic, 119-120 Umbilical vessels formation, weeks 3-8, 29 Uncinate process, 122 Undescended testes bilateral, 188, 188f unilateral, 188 Unicornuate uterus anomalies, 177, 177f Unilateral undescended testes, 188 Upper anal canal, 128-129, 128f-129f Upper limb, 228-233 apical ectodermal ridge, 228 digit formation, 228 musculature, 229, 230f nerves, brachial plexus, 229-230, 230f

Index

rotation, 231-232, 231f skeletal, 232-233, 232f, 233f childhood, 232-233, 232f, 233f weeks 5-9, 232, 232f weeks 9-birth, 232, 232f vasculature, 228-229, 229f zone of polarizing activity, 228 Urachal cyst, 164 Urachal fissure, 60 Urachal fistula, 164 Urachus, 159 Ureter, ectopic opening of, 164-165 Ureteral ectopia, 164-165 Ureteric bud, 156, 158f, 159f Ureterocele, 165, 165f Ureteropelvic duplications, 164, 164f Ureteropelvic junction obstruction, 163, 163f Urethra female, 159-160, 160f male, 160-161, 160f Urethral glands, 159 Urinary bladder, 159, 160f Urinary system, 156-170. See also specific sites clinical considerations in, 161-165 childhood polycystic kidney disease, 163, 163f ectopic opening of ureter, 164-165 exstrophy of bladder, 164, 164f renal agenesis, 161 renal artery stenosis, 162, 162f renal dysplasia, 161 renal ectopia, 161 renal fusion, 162, 162f renal hypoplasia, 161 urachal fistula or cyst, 164 ureterocele, 165, 165f ureteropelvic duplications, 164, 164f ureteropelvic junction obstruction, 163, 163f Wilms tumor, 164, 164f kidneys blood supply of, 158 relative ascent of, 157-158, 158f metanephros, 156-157, 157f-159f overview, 156, 157f suprarenal gland, 165-168, 166f urethra female, 159-160, 160f male, 160-161, 160f urinary bladder, 159, 160f Urogenital folds female, 175, 175f, 191t male, 186, 186f, 191t Urogenital membrane, 128, 128f Urogenital ridge, 29 female, 171, 172f male, 182, 183f Urogenital sinus, 128, 128f, 158f, 159, 174f Urorectal septum, 128, 128f Uterine anomalies, 176-178, 176f-177f Uterine tube ampulla, ectopic pregnancy in, 14 Uterine tubes, 173, 174f Uterine type agenesis, 176, 176f Uterovaginal primordium, 184, 185f Uterus anomalies bicornuate uterus, 177, 177f diethylstilbestrol (DES)-related, 178, 178f double uterus, 177, 177f

Müllerian hypoplasia/agenesis, 176, 176f septate uterus, 178, 178f unicornuate uterus, 177, 177f Uterus hypoplasia, 176, 176f Utricle, 98, 99f, 101t Utricular portion, of otic vesicle, 98, 99f, 101t Uvomorulin, 13 Vaccinations, childhood, 261 VACTERL, 32, 32f, 117, 117f Vagal nerve (CN X), development of, 85 Vagina agenesis of, 176f atresia of, 176 vestibule of, 160, 160f Vaginal plate, 173, 174f Vagus nerves, 118, 119f Valproic acid, 263 Varicella vaccine, 261 Varicella zoster virus (VZV) infection, on fetus, 258 Vasa previa, 64 Vascular compression, of esophagus, 118, 118f Vascular endothelial growth factor (VEGF), 37 Vasculature. See also specific vessels of lower limb, 236-238, 237f of upper limb, 228-229, 229f Vasculogenesis in weeks 3-8, 29-31 in extraembryonic mesoderm, 29 in intraembryonic mesoderm, 29-31 VATER, 32, 32f, 117, 117f Velamentous placenta, 64, 64f Venous system clinical considerations in absence of hepatic portion of inferior vena cava, 49 double inferior vena cava, 49 double superior vena cava, 49 left superior vena cava, 49 general pattern of, 49, 49f, 49t Ventral arteries, 47, 48t Ventral AV cushion, 43, 43f Ventral mesentery, 120, 130, 130t Ventral primary rami of lower limb, 239, 239f of upper limb, 230, 231f Ventricle, primitive, 37, 38f Ventricular system (brain), from neural tube, 70 Ventricular zone, of neural tube, 77, 77f Ventriculoseptal defects (VSD) membranous, 45-46, 46f muscular, 45 Vermis, 80 Vesicles, brain, 74, 75f Vestibular ganglion of cranial nerve VIII, 98, 99f, 101t Vestibular glands greater, of Bartholin, 160 lesser, 160 Vestibular nuclei, 78, 79, 79f Vestibule, of vagina, 160, 160f Vestibulocochlear nerve (CN VIII), 85 Vestigial remnants of genital ducts female, 175, 175f male, 184, 185f Villous chorion, 55, 56f, 57f Vinclozolin, 263

309

Viral infections, on fetus, 259 cytomegalovirus, 258 herpes simplex virus, 258 human immunodeficiency virus, 258 rubella virus, 257 varicella zoster virus, 258 Visceral mesoderm, digestive system from, 115 Visceropleure, 28f, 29 Vitelline arteries, 47, 48t Vitelline duct, 60 Vitelline veins, 49, 49f, 49t Vitelline veins, hepatic, 119 Vitreous body, 109 Volvulus, 125, 125f von Recklinghausen disease, 73, 73f Waardenburg syndrome, 73-74, 73f Waldever's ring, 148 Warfarin, 261–262 Week 1, 12-17 cleavage and blastocyst formation in, 12-13, 13f clinical considerations in ectopic tubal pregnancy, 14 testicular teratocarcinoma, 14 fertilization in, 12 implantation in, 13-14, 13f Week 2, 18-21 clinical considerations in gestational trophoblastic neoplasia, 21, 21f human chorionic gonadotropin, 20 hydatidiform mole, 20, 20f oncofetal antigens, 21, 21t RU-486, 20 embryoblast development in, further, 18, 19f extraembryonic mesoderm development in, 18-20, 19f trophoblast development in, further, 18, 19f Weeks 3-8, 27-32 clinical considerations in β-thalassemia major, 32 caudal dysplasia, 32, 32f chordoma, 31 first missed menstrual period, 31

hydrops fetalis, 32 hydroxyurea for sickle cell disease, 32 sacrococcygeal teratoma, 32, 32f thalassemia syndromes, 31-32 embryoblast development in, 27-29 gastrulation, 27-28, 28f intraembryonic mesoderm changes, 28-29, 29f, 30t general considerations in, 27 hematopoiesis in, 31, 31f vasculogenesis in, 29-31 in extraembryonic mesoderm, 29 in intraembryonic mesoderm, 29-31 Wharton's jelly, 60 White matter, 83 Wilms tumor, 164, 164f Wnt7 gene in lower limb development, 236 in upper limb development, 228 Wolffian ducts, 156 female, 173, 174f male, 184, 185f Wolffian tubules, 173 WT-1, 156 Xanthochromia, 76 X chromosome, 1 XX. 1 XY. 1 46,XY genotype, 190, 190f Y chromosome, 1 Yolk sac, 60 Yolk sac wall, 1 Zona pellucida degeneration of, 13 sperm penetration of, 12 Zone of polarizing activity (ZPA) of lower limb, 236 of upper limb, 228 Zonula occludens, 76

Zygote, 12